Conformal type and isoperimetric dimension of Riemannian manifolds
Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 379-385.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of conformal isoperimetric dimension is introduced. For Riemannian manifolds, connections between its conformal isoperimetric dimension and its conformal type are established.
@article{MZM_1998_63_3_a6,
     author = {V. A. Zorich and V. M. Kesel'man},
     title = {Conformal type and isoperimetric dimension of {Riemannian} manifolds},
     journal = {Matemati\v{c}eskie zametki},
     pages = {379--385},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a6/}
}
TY  - JOUR
AU  - V. A. Zorich
AU  - V. M. Kesel'man
TI  - Conformal type and isoperimetric dimension of Riemannian manifolds
JO  - Matematičeskie zametki
PY  - 1998
SP  - 379
EP  - 385
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a6/
LA  - ru
ID  - MZM_1998_63_3_a6
ER  - 
%0 Journal Article
%A V. A. Zorich
%A V. M. Kesel'man
%T Conformal type and isoperimetric dimension of Riemannian manifolds
%J Matematičeskie zametki
%D 1998
%P 379-385
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a6/
%G ru
%F MZM_1998_63_3_a6
V. A. Zorich; V. M. Kesel'man. Conformal type and isoperimetric dimension of Riemannian manifolds. Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 379-385. http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a6/

[1] Ahlfors L., “Zur Theorie des Überlagerungsflächen”, Acta Math., 65 (1935), 157–194 | DOI | Zbl

[2] Gromov M., Structures métriques pour les variétés riemanniennes, Notes du cours rédigé par J. Lafontaine et P. Pansu, CEDIC/Fernand-Nathan et Soc. Math. de France, Paris, 1981 | Zbl

[3] Pansu P., “Quasiconformal mappings and manifolds of negative curvature”, Lecture Notes in Math., 1201, 1986, 212–229 | MR | Zbl

[4] Zorich V. A., Keselman V. M., “O konformnom tipe rimanova mnogoobraziya”, Funktsion. analiz i ego prilozh., 30:2 (1996), 40–55 | MR | Zbl

[5] Grimaldi R., Pansu P., “Sur la croissance du volume dans une classe conforme”, J. Math. Pures Appl. (9), 71:1 (1992), 1–19 | MR | Zbl

[6] Ahlfors L., “Sur le type d'une surface de Riemann”, C. R. Acad. Sci. Paris. Sér. A, 201 (1935), 30–32 | Zbl