Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1998_63_3_a6, author = {V. A. Zorich and V. M. Kesel'man}, title = {Conformal type and isoperimetric dimension of {Riemannian} manifolds}, journal = {Matemati\v{c}eskie zametki}, pages = {379--385}, publisher = {mathdoc}, volume = {63}, number = {3}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a6/} }
V. A. Zorich; V. M. Kesel'man. Conformal type and isoperimetric dimension of Riemannian manifolds. Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 379-385. http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a6/
[1] Ahlfors L., “Zur Theorie des Überlagerungsflächen”, Acta Math., 65 (1935), 157–194 | DOI | Zbl
[2] Gromov M., Structures métriques pour les variétés riemanniennes, Notes du cours rédigé par J. Lafontaine et P. Pansu, CEDIC/Fernand-Nathan et Soc. Math. de France, Paris, 1981 | Zbl
[3] Pansu P., “Quasiconformal mappings and manifolds of negative curvature”, Lecture Notes in Math., 1201, 1986, 212–229 | MR | Zbl
[4] Zorich V. A., Keselman V. M., “O konformnom tipe rimanova mnogoobraziya”, Funktsion. analiz i ego prilozh., 30:2 (1996), 40–55 | MR | Zbl
[5] Grimaldi R., Pansu P., “Sur la croissance du volume dans une classe conforme”, J. Math. Pures Appl. (9), 71:1 (1992), 1–19 | MR | Zbl
[6] Ahlfors L., “Sur le type d'une surface de Riemann”, C. R. Acad. Sci. Paris. Sér. A, 201 (1935), 30–32 | Zbl