A singularly perturbed boundary value problem for a second-order equation in the case of variation of stability
Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 354-362.

Voir la notice de l'article provenant de la source Math-Net.Ru

A boundary value problem for a second-order nonlinear singularly perturbed differential equation is considered for the case in which there is variation of stability caused by the intersection of roots of the degenerate equation. By the method of differential inequalities, we prove the existence of a solution such that the limit solution is nonsmooth.
@article{MZM_1998_63_3_a3,
     author = {V. F. Butuzov and N. N. Nefedov},
     title = {A singularly perturbed boundary value problem for a second-order equation in the case of variation of stability},
     journal = {Matemati\v{c}eskie zametki},
     pages = {354--362},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a3/}
}
TY  - JOUR
AU  - V. F. Butuzov
AU  - N. N. Nefedov
TI  - A singularly perturbed boundary value problem for a second-order equation in the case of variation of stability
JO  - Matematičeskie zametki
PY  - 1998
SP  - 354
EP  - 362
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a3/
LA  - ru
ID  - MZM_1998_63_3_a3
ER  - 
%0 Journal Article
%A V. F. Butuzov
%A N. N. Nefedov
%T A singularly perturbed boundary value problem for a second-order equation in the case of variation of stability
%J Matematičeskie zametki
%D 1998
%P 354-362
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a3/
%G ru
%F MZM_1998_63_3_a3
V. F. Butuzov; N. N. Nefedov. A singularly perturbed boundary value problem for a second-order equation in the case of variation of stability. Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 354-362. http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a3/

[1] Vasileva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990 | Zbl

[2] Gudkov V. V., Klokov Yu. A., Lepin A. Ya., Ponomarev V. D., Dvukhtochechnye kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii, Zinatne, Riga, 1973 | Zbl

[3] Nefedov N. N., “Metod differentsialnykh neravenstv dlya nekotorykh singulyarno vozmuschennykh zadach v chastnykh proizvodnykh”, Differents. uravneniya, 31:4 (1993), 719–722 | MR

[4] Lebowitz N. R., Shaar R. J., “Exchange of stabilities in autonomous systems”, Stud. Appl. Math., 54:3 (1975), 229–259

[5] Nefedov N., Schneider K., Schuppert A., Jumping Behavior in Singularly Perturbed Systems Modelling Bimolecular Reactions, Preprint No 137, WIAS, Berlin, 1994

[6] Jackson L. K., “Subfunctions and second-order ordinary differential inequalities”, Adv. Math., 2 (1968), 308–363 | DOI

[7] Butuzov V. F., Nesterov A. V., “O nekotorykh singulyarno vozmuschennykh zadachakh s negladkimi pogranfunktsiyami”, Dokl. AN SSSR, 263:4 (1982), 786–789 | MR | Zbl