A geometric method for solving a series of integral Poincar\'e--Steklov equations
Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 343-353.

Voir la notice de l'article provenant de la source Math-Net.Ru

Eigenvalues and eigenfunctions are explicitly found for a family of singular integral equations. It is shown how their discrete spectrum becomes continuous as the equation degenerates.
@article{MZM_1998_63_3_a2,
     author = {A. B. Bogatyrev},
     title = {A geometric method for solving a series of integral {Poincar\'e--Steklov} equations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {343--353},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a2/}
}
TY  - JOUR
AU  - A. B. Bogatyrev
TI  - A geometric method for solving a series of integral Poincar\'e--Steklov equations
JO  - Matematičeskie zametki
PY  - 1998
SP  - 343
EP  - 353
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a2/
LA  - ru
ID  - MZM_1998_63_3_a2
ER  - 
%0 Journal Article
%A A. B. Bogatyrev
%T A geometric method for solving a series of integral Poincar\'e--Steklov equations
%J Matematičeskie zametki
%D 1998
%P 343-353
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a2/
%G ru
%F MZM_1998_63_3_a2
A. B. Bogatyrev. A geometric method for solving a series of integral Poincar\'e--Steklov equations. Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 343-353. http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a2/

[1] Bogatyrev A. B., “On spectra of pairs of Poincaré–Steklov operators”, Russian J. Numer. Anal. Math. Modelling, 8:3 (1993), 171–194 | MR

[2] Bogatyrëv A. B., “Diskretnyi spektr zadachi dlya pary operatorov Puankare–Steklova”, Dokl. RAN, 358:3 (1998), 295–297 | MR | Zbl

[3] Lebedev V. I., Agoshkov V. I., Operatory Puankare–Steklova i ikh primenenie v analize, OVM AN, M., 1983

[4] Grisvard P., Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985 | Zbl

[5] Lions Zh. L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh primenenie, Mir, M., 1971 | Zbl

[6] Ovchinnikov E. E., “Sopryazhennye uravneniya, algoritmy vozmuschenii i optimalnoe upravlenie”, Sb. nauchnykh trudov, eds. V. I. Agoshkova, V. P. Shutyaev, 1993, 64–100; Деп. ВИНИТИ No. 453-В93 от 25.03.93, ВИНИТИ, М.

[7] Gakhov F. D., Chibrikova L. I., “O nekotorykh tipakh singulyarnykh integralnykh uravnenii, razreshimykh v zamknutoi forme”, Matem. sb., 35(77):3 (1954), 395–436 | MR | Zbl

[8] Gakhov F. D., Kraevye zadachi, Nauka, M., 1978 | Zbl

[9] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968

[10] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, Gostekhizdat, M., 1950

[11] Lavrentev M. A., Shabat B. V., Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1987 | Zbl