A geometric method for solving a series of integral Poincar\'e--Steklov equations
Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 343-353

Voir la notice de l'article provenant de la source Math-Net.Ru

Eigenvalues and eigenfunctions are explicitly found for a family of singular integral equations. It is shown how their discrete spectrum becomes continuous as the equation degenerates.
@article{MZM_1998_63_3_a2,
     author = {A. B. Bogatyrev},
     title = {A geometric method for solving a series of integral {Poincar\'e--Steklov} equations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {343--353},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a2/}
}
TY  - JOUR
AU  - A. B. Bogatyrev
TI  - A geometric method for solving a series of integral Poincar\'e--Steklov equations
JO  - Matematičeskie zametki
PY  - 1998
SP  - 343
EP  - 353
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a2/
LA  - ru
ID  - MZM_1998_63_3_a2
ER  - 
%0 Journal Article
%A A. B. Bogatyrev
%T A geometric method for solving a series of integral Poincar\'e--Steklov equations
%J Matematičeskie zametki
%D 1998
%P 343-353
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a2/
%G ru
%F MZM_1998_63_3_a2
A. B. Bogatyrev. A geometric method for solving a series of integral Poincar\'e--Steklov equations. Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 343-353. http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a2/