Almost-periodic solutions to systems of differential equations with fast and slow time in the degenerate case
Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 451-456.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a system of ordinary first-order differential equations. The right-hand sides of the system are proportional to a small parameter and depend almost periodically on fast time and periodically on slow time. With this system, we associate the system averaged over fast time. We assume that the averaged system has a structurally unstable periodic solution. We prove a theorem on the existence and stability of almost periodic solutions of the original system.
@article{MZM_1998_63_3_a16,
     author = {A. Yu. Ukhalov},
     title = {Almost-periodic solutions to systems of differential equations with fast and slow time in the degenerate case},
     journal = {Matemati\v{c}eskie zametki},
     pages = {451--456},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a16/}
}
TY  - JOUR
AU  - A. Yu. Ukhalov
TI  - Almost-periodic solutions to systems of differential equations with fast and slow time in the degenerate case
JO  - Matematičeskie zametki
PY  - 1998
SP  - 451
EP  - 456
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a16/
LA  - ru
ID  - MZM_1998_63_3_a16
ER  - 
%0 Journal Article
%A A. Yu. Ukhalov
%T Almost-periodic solutions to systems of differential equations with fast and slow time in the degenerate case
%J Matematičeskie zametki
%D 1998
%P 451-456
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a16/
%G ru
%F MZM_1998_63_3_a16
A. Yu. Ukhalov. Almost-periodic solutions to systems of differential equations with fast and slow time in the degenerate case. Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 451-456. http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a16/

[1] Roseau M., “Sur une classe des systemes dynamiques soumis à des excitations periodiques de longue periode”, C. R. Acad. Sci. Paris. Sér. A, 268:7 (1969), 409–412 | MR | Zbl

[2] Burd V. Sh., Malye pochti periodicheskie kolebaniya v sistemakh s bystrymi i medlennymi parametricheskimi vozbuzhdeniyami, Dep. VINITI, No 176-83, VINITI, M., 1982

[3] Levitan B. M., Pochti-periodicheskie funktsii, Gostekhizdat, M., 1953

[4] Yakubovich V. A., Starzhinskii V. M., Lineinye differentsialnye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya, Nauka, M., 1972

[5] Shtokalo I. Z., Lineinye differentsialnye uravneniya s peremennymi koeffitsientami, Izd-vo AN USSR, Kiev, 1960

[6] Krasnoselskii M. A., Burd V. Sh., Kolesov Yu. S., Nelineinye pochti periodicheskie kolebaniya, Nauka, M., 1970