On the solvability of a nonstationary problem describing the dynamics of an incompressible viscoelastic fluid
Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 442-450.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the local solvability of the Cauchy–Dirichlet problem for the system \begin{gather*} (1-\varkappa\nabla ^2)\mathbf v_t=\nu\nabla^2\mathbf v-(\mathbf v\cdot\nabla)\mathbf v-\nabla p+\mathbf f(t), \\ 0=-\nabla(\nabla\cdot\mathbf v), \end{gather*} which describes the dynamics of an incompressible viscoelastic Kelvin–Voigt fluid. The configuration space of the problem is described.
@article{MZM_1998_63_3_a15,
     author = {G. A. Sviridyuk and T. G. Sukacheva},
     title = {On the solvability of a nonstationary problem describing the dynamics of an incompressible viscoelastic fluid},
     journal = {Matemati\v{c}eskie zametki},
     pages = {442--450},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a15/}
}
TY  - JOUR
AU  - G. A. Sviridyuk
AU  - T. G. Sukacheva
TI  - On the solvability of a nonstationary problem describing the dynamics of an incompressible viscoelastic fluid
JO  - Matematičeskie zametki
PY  - 1998
SP  - 442
EP  - 450
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a15/
LA  - ru
ID  - MZM_1998_63_3_a15
ER  - 
%0 Journal Article
%A G. A. Sviridyuk
%A T. G. Sukacheva
%T On the solvability of a nonstationary problem describing the dynamics of an incompressible viscoelastic fluid
%J Matematičeskie zametki
%D 1998
%P 442-450
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a15/
%G ru
%F MZM_1998_63_3_a15
G. A. Sviridyuk; T. G. Sukacheva. On the solvability of a nonstationary problem describing the dynamics of an incompressible viscoelastic fluid. Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 442-450. http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a15/

[1] Oskolkov A. P., “Nachalno-kraevye zadachi dlya uravneniya dvizheniya zhidkostei Kelvina–Foigta i zhidkostei Oldroita”, Tr. MIAN, 179, Nauka, M., 1988, 126–164 | MR

[2] Sviridyuk G. A., Sukacheva T. G., “Fazovye prostranstva odnogo klassa operatornykh uravnenii”, Differents. uravneniya, 26:2 (1990), 250–258 | MR | Zbl

[3] Sviridyuk G. A., Sukacheva T. G., “Zadacha Koshi dlya odnogo klassa polulineinykh uravnenii tipa Soboleva”, Sib. matem. zh., 31:5 (1990), 109–119 | MR | Zbl

[4] Oskolkov A. P., “K teorii zhidkostei Foigta”, Zapiski nauch. sem. LOMI, 96, Nauka, L., 1980, 233–236 | MR | Zbl

[5] Sviridyuk G. A., “Polulineinye uravneniya tipa Soboleva s otnositelno ogranichennymi operatorami”, Dokl. AN SSSR, 318:4 (1991), 828–831 | MR | Zbl

[6] Sviridyuk G. A., “Ob odnoi modeli dinamiki neszhimaemoi vyazko-uprugoi zhidkosti”, Izv. vuzov. Matem., 1988, no. 1, 74–79 | MR | Zbl

[7] Sviridyuk G. A., “O mnogoobrazii reshenii odnoi zadachi neszhimaemoi vyazkouprugoi zhidkosti”, Differents. uravneniya, 24:10 (1988), 1846–1848 | MR

[8] Landau L. D., Lifshits E. M., Gidrodinamika, 3-e izd., Nauka, M., 1986

[9] Borisovich Yu. G., Zvyagin V. G., Sapronov Yu. I., “Nelineinye fredgolmovy otobrazheniya i teoriya Lere–Shaudera”, UMN, 32:4 (1977), 3–54 | MR | Zbl

[10] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969

[11] Levine H. A., “Some nonexistance and instability theorems for solutions of formally parabolic equation of the form $Pu_t=-Au+F(u)$”, Arch. Rational Mech. Anal., 51:5 (1973), 371–386 | DOI | MR | Zbl

[12] Leng S., Vvedenie v teoriyu differentsiruemykh mnogoobrazii, Mir, M., 1967

[13] Kapitanskii L. V., Piletskas K. N., “O nekotorykh zadachakh vektornogo analiza”, Zapiski nauch. sem. LOMI, 138, Nauka, L., 1984, 65–85 | MR | Zbl

[14] Oskolkov A. P., “Nelokalnye problemy dlya odnogo klassa nelineinykh operatornykh uravnenii, voznikayuschikh v teorii uravnenii tipa S. L. Soboleva”, Zapiski nauch. sem. LOMI, 198, Nauka, L., 1991, 31–48 | Zbl