Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1998_63_3_a15, author = {G. A. Sviridyuk and T. G. Sukacheva}, title = {On the solvability of a nonstationary problem describing the dynamics of an incompressible viscoelastic fluid}, journal = {Matemati\v{c}eskie zametki}, pages = {442--450}, publisher = {mathdoc}, volume = {63}, number = {3}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a15/} }
TY - JOUR AU - G. A. Sviridyuk AU - T. G. Sukacheva TI - On the solvability of a nonstationary problem describing the dynamics of an incompressible viscoelastic fluid JO - Matematičeskie zametki PY - 1998 SP - 442 EP - 450 VL - 63 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a15/ LA - ru ID - MZM_1998_63_3_a15 ER -
%0 Journal Article %A G. A. Sviridyuk %A T. G. Sukacheva %T On the solvability of a nonstationary problem describing the dynamics of an incompressible viscoelastic fluid %J Matematičeskie zametki %D 1998 %P 442-450 %V 63 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a15/ %G ru %F MZM_1998_63_3_a15
G. A. Sviridyuk; T. G. Sukacheva. On the solvability of a nonstationary problem describing the dynamics of an incompressible viscoelastic fluid. Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 442-450. http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a15/
[1] Oskolkov A. P., “Nachalno-kraevye zadachi dlya uravneniya dvizheniya zhidkostei Kelvina–Foigta i zhidkostei Oldroita”, Tr. MIAN, 179, Nauka, M., 1988, 126–164 | MR
[2] Sviridyuk G. A., Sukacheva T. G., “Fazovye prostranstva odnogo klassa operatornykh uravnenii”, Differents. uravneniya, 26:2 (1990), 250–258 | MR | Zbl
[3] Sviridyuk G. A., Sukacheva T. G., “Zadacha Koshi dlya odnogo klassa polulineinykh uravnenii tipa Soboleva”, Sib. matem. zh., 31:5 (1990), 109–119 | MR | Zbl
[4] Oskolkov A. P., “K teorii zhidkostei Foigta”, Zapiski nauch. sem. LOMI, 96, Nauka, L., 1980, 233–236 | MR | Zbl
[5] Sviridyuk G. A., “Polulineinye uravneniya tipa Soboleva s otnositelno ogranichennymi operatorami”, Dokl. AN SSSR, 318:4 (1991), 828–831 | MR | Zbl
[6] Sviridyuk G. A., “Ob odnoi modeli dinamiki neszhimaemoi vyazko-uprugoi zhidkosti”, Izv. vuzov. Matem., 1988, no. 1, 74–79 | MR | Zbl
[7] Sviridyuk G. A., “O mnogoobrazii reshenii odnoi zadachi neszhimaemoi vyazkouprugoi zhidkosti”, Differents. uravneniya, 24:10 (1988), 1846–1848 | MR
[8] Landau L. D., Lifshits E. M., Gidrodinamika, 3-e izd., Nauka, M., 1986
[9] Borisovich Yu. G., Zvyagin V. G., Sapronov Yu. I., “Nelineinye fredgolmovy otobrazheniya i teoriya Lere–Shaudera”, UMN, 32:4 (1977), 3–54 | MR | Zbl
[10] Vainberg M. M., Trenogin V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969
[11] Levine H. A., “Some nonexistance and instability theorems for solutions of formally parabolic equation of the form $Pu_t=-Au+F(u)$”, Arch. Rational Mech. Anal., 51:5 (1973), 371–386 | DOI | MR | Zbl
[12] Leng S., Vvedenie v teoriyu differentsiruemykh mnogoobrazii, Mir, M., 1967
[13] Kapitanskii L. V., Piletskas K. N., “O nekotorykh zadachakh vektornogo analiza”, Zapiski nauch. sem. LOMI, 138, Nauka, L., 1984, 65–85 | MR | Zbl
[14] Oskolkov A. P., “Nelokalnye problemy dlya odnogo klassa nelineinykh operatornykh uravnenii, voznikayuschikh v teorii uravnenii tipa S. L. Soboleva”, Zapiski nauch. sem. LOMI, 198, Nauka, L., 1991, 31–48 | Zbl