On the solvability of a nonstationary problem describing the dynamics of an incompressible viscoelastic fluid
Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 442-450

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the local solvability of the Cauchy–Dirichlet problem for the system \begin{gather*} (1-\varkappa\nabla ^2)\mathbf v_t=\nu\nabla^2\mathbf v-(\mathbf v\cdot\nabla)\mathbf v-\nabla p+\mathbf f(t), \\ 0=-\nabla(\nabla\cdot\mathbf v), \end{gather*} which describes the dynamics of an incompressible viscoelastic Kelvin–Voigt fluid. The configuration space of the problem is described.
@article{MZM_1998_63_3_a15,
     author = {G. A. Sviridyuk and T. G. Sukacheva},
     title = {On the solvability of a nonstationary problem describing the dynamics of an incompressible viscoelastic fluid},
     journal = {Matemati\v{c}eskie zametki},
     pages = {442--450},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a15/}
}
TY  - JOUR
AU  - G. A. Sviridyuk
AU  - T. G. Sukacheva
TI  - On the solvability of a nonstationary problem describing the dynamics of an incompressible viscoelastic fluid
JO  - Matematičeskie zametki
PY  - 1998
SP  - 442
EP  - 450
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a15/
LA  - ru
ID  - MZM_1998_63_3_a15
ER  - 
%0 Journal Article
%A G. A. Sviridyuk
%A T. G. Sukacheva
%T On the solvability of a nonstationary problem describing the dynamics of an incompressible viscoelastic fluid
%J Matematičeskie zametki
%D 1998
%P 442-450
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a15/
%G ru
%F MZM_1998_63_3_a15
G. A. Sviridyuk; T. G. Sukacheva. On the solvability of a nonstationary problem describing the dynamics of an incompressible viscoelastic fluid. Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 442-450. http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a15/