The topological center of the semigroup of free ultrafilters
Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 437-441.

Voir la notice de l'article provenant de la source Math-Net.Ru

For any group $G$, it is proved that the topological center of the semigroup of free ultrafilters on the group $G$ is empty.
@article{MZM_1998_63_3_a14,
     author = {I. V. Protasov},
     title = {The topological center of the semigroup of free ultrafilters},
     journal = {Matemati\v{c}eskie zametki},
     pages = {437--441},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a14/}
}
TY  - JOUR
AU  - I. V. Protasov
TI  - The topological center of the semigroup of free ultrafilters
JO  - Matematičeskie zametki
PY  - 1998
SP  - 437
EP  - 441
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a14/
LA  - ru
ID  - MZM_1998_63_3_a14
ER  - 
%0 Journal Article
%A I. V. Protasov
%T The topological center of the semigroup of free ultrafilters
%J Matematičeskie zametki
%D 1998
%P 437-441
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a14/
%G ru
%F MZM_1998_63_3_a14
I. V. Protasov. The topological center of the semigroup of free ultrafilters. Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 437-441. http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a14/

[1] Lau A., Pym J., “The topological centre of a compactification of a locally compact group”, Math. Z., 219 (1995), 567–579 | DOI | MR | Zbl

[2] Shelah S., Proper Forcing, Lecture Notes in Math., 940, Springer, Berlin, 1982 | Zbl

[3] Protasov I. V., “Tochki sovmestnoi nepreryvnosti polugruppy ultrafiltrov abelevoi gruppy”, Matem. sb., 187:2 (1996), 131–140 | MR | Zbl

[4] Blass A., Hindman N., “On strongly summable and union ultrafilters”, Trans. Amer. Math. Soc., 304:1 (1987), 83–99 | DOI | MR | Zbl