Undecidability of the elementary theory of groups of measure-preserving transformations
Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 414-420.

Voir la notice de l'article provenant de la source Math-Net.Ru

The undecidability of the elementary theory of the automorphism group for a Lebesgue space is proved. It is shown that arithmetic can be interpreted in this theory. The technique of proof can be carried over to certain other groups.
@article{MZM_1998_63_3_a11,
     author = {A. V. Mitin},
     title = {Undecidability of the elementary theory of groups of measure-preserving transformations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {414--420},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a11/}
}
TY  - JOUR
AU  - A. V. Mitin
TI  - Undecidability of the elementary theory of groups of measure-preserving transformations
JO  - Matematičeskie zametki
PY  - 1998
SP  - 414
EP  - 420
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a11/
LA  - ru
ID  - MZM_1998_63_3_a11
ER  - 
%0 Journal Article
%A A. V. Mitin
%T Undecidability of the elementary theory of groups of measure-preserving transformations
%J Matematičeskie zametki
%D 1998
%P 414-420
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a11/
%G ru
%F MZM_1998_63_3_a11
A. V. Mitin. Undecidability of the elementary theory of groups of measure-preserving transformations. Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 414-420. http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a11/

[1] Khalmosh P. R., Lektsii po ergodicheskoi teorii, Nauka, M., 1959

[2] Fathi A., “Le groupe de transformations de $[0,1]$ qui preservent la mesure de Lebesgue est un groupe simple”, Israel J. Math., 29:2–3 (1978), 302–308 | DOI | MR | Zbl

[3] Eigen S. J., “The group of measure-preserving transformations of $[0,1]$ has no outer automorphisms”, Math. Ann., 259:2 (1982), 259–270 | DOI | MR | Zbl

[4] Ryzhikov V. V., “Predstavlenie preobrazovanii, sokhranyayuschikh meru Lebega, v vide proizvedeniya periodicheskikh preobrazovanii”, Matem. zametki, 38:6 (1985), 860–865 | MR | Zbl

[5] Ershov Yu. L., Lavrov I. A., Taimanov A. D., Taitslin M. A., “Elementarnye teorii”, UMN, 20:4 (1965), 37–108 | MR | Zbl