Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1998_63_3_a11, author = {A. V. Mitin}, title = {Undecidability of the elementary theory of groups of measure-preserving transformations}, journal = {Matemati\v{c}eskie zametki}, pages = {414--420}, publisher = {mathdoc}, volume = {63}, number = {3}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a11/} }
A. V. Mitin. Undecidability of the elementary theory of groups of measure-preserving transformations. Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 414-420. http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a11/
[1] Khalmosh P. R., Lektsii po ergodicheskoi teorii, Nauka, M., 1959
[2] Fathi A., “Le groupe de transformations de $[0,1]$ qui preservent la mesure de Lebesgue est un groupe simple”, Israel J. Math., 29:2–3 (1978), 302–308 | DOI | MR | Zbl
[3] Eigen S. J., “The group of measure-preserving transformations of $[0,1]$ has no outer automorphisms”, Math. Ann., 259:2 (1982), 259–270 | DOI | MR | Zbl
[4] Ryzhikov V. V., “Predstavlenie preobrazovanii, sokhranyayuschikh meru Lebega, v vide proizvedeniya periodicheskikh preobrazovanii”, Matem. zametki, 38:6 (1985), 860–865 | MR | Zbl
[5] Ershov Yu. L., Lavrov I. A., Taimanov A. D., Taitslin M. A., “Elementarnye teorii”, UMN, 20:4 (1965), 37–108 | MR | Zbl