Instantaneous shrinking of the support of solutions to a nonlinear degenerate parabolic equation
Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 323-331.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the effect of shrinking of the support of a solution to a nonlinear parabolic equation with strong heat drain at low temperatures.
@article{MZM_1998_63_3_a0,
     author = {U. G. Abdullaev},
     title = {Instantaneous shrinking of the support of solutions to a nonlinear degenerate parabolic equation},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--331},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a0/}
}
TY  - JOUR
AU  - U. G. Abdullaev
TI  - Instantaneous shrinking of the support of solutions to a nonlinear degenerate parabolic equation
JO  - Matematičeskie zametki
PY  - 1998
SP  - 323
EP  - 331
VL  - 63
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a0/
LA  - ru
ID  - MZM_1998_63_3_a0
ER  - 
%0 Journal Article
%A U. G. Abdullaev
%T Instantaneous shrinking of the support of solutions to a nonlinear degenerate parabolic equation
%J Matematičeskie zametki
%D 1998
%P 323-331
%V 63
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a0/
%G ru
%F MZM_1998_63_3_a0
U. G. Abdullaev. Instantaneous shrinking of the support of solutions to a nonlinear degenerate parabolic equation. Matematičeskie zametki, Tome 63 (1998) no. 3, pp. 323-331. http://geodesic.mathdoc.fr/item/MZM_1998_63_3_a0/

[1] Kalashnikov A. S., “Nekotorye voprosy kachestvennoi teorii nelineinykh vyrozhdayuschikhsya parabolicheskikh uravnenii vtorogo poryadka”, UMN, 42:2 (254) (1987), 135–176 | MR | Zbl

[2] Kershner R., “O nekotorykh svoistvakh obobschennykh reshenii kvazilineinykh vyrozhdayuschikhsya parabolicheskikh uravnenii”, Acta Math. Hungar., 32 (1978), 301–330 | DOI | MR | Zbl

[3] Sacks P. E., “The initial and boundary value problem for a class of degenerate parabolic equations”, Comm. Partial Differential Equations, 8 (1983), 693–733 | DOI | MR | Zbl

[4] Bertch M. A., “A class of degenerate diffusion equations with a singular term”, Nonlinear Anal., 7 (1983), 117–127 | DOI | MR

[5] Samarskii A. A., Galaktionov V. A., Kurdyumov S. P., Mikhailov A. P., Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987

[6] Evans L. C., Knerr B. K., “Instantaneous shrinking of the support of nonnegative solutions to certain nonlinear parabolic equations and variational inequalities”, Illinois J. Math., 23:1 (1979), 153–166 | MR | Zbl

[7] Kalashnikov A. S., “O zavisimosti svoistv reshenii parabolicheskikh uravnenii v neogranichennykh oblastyakh ot povedeniya koeffitsientov na beskonechnosti”, Matem. sb., 125:3 (1984), 398–409 | MR | Zbl

[8] Gilding B. H., Kersner R., “Instantaneous shrinking in nonlinear diffusion convection”, Proc. Amer. Math. Soc., 109 (1990), 385–394 | DOI | MR | Zbl

[9] Kalashnikov A. S., “O povedenii vblizi nachalnoi giperploskosti reshenii zadachi Koshi dlya parabolicheskikh sistem s nelineinoi dissipatsiei”, Tr. sem. im. I. G. Petrovskogo, 16, Izd-vo Mosk. un-ta, M., 1992, 106–113