Classification up to cobordism of manifolds with simple action of $\mathbb Z/p$
Matematičeskie zametki, Tome 63 (1998) no. 2, pp. 260-268.

Voir la notice de l'article provenant de la source Math-Net.Ru

We deal with quasi-complex manifolds with an action of the group $\mathbb Z/p$ such that the set of fixed points of this action has a trivial normal bundle. The set of cobordism classes of these manifolds is described in terms of the coefficients of the formal group of geometric cobordisms and in terms of characteristic numbers. We also establish the relationship between this work and relevant papers containing a solution of this problem in some particular cases.
@article{MZM_1998_63_2_a9,
     author = {T. E. Panov},
     title = {Classification up to cobordism of manifolds with simple action of $\mathbb Z/p$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {260--268},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a9/}
}
TY  - JOUR
AU  - T. E. Panov
TI  - Classification up to cobordism of manifolds with simple action of $\mathbb Z/p$
JO  - Matematičeskie zametki
PY  - 1998
SP  - 260
EP  - 268
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a9/
LA  - ru
ID  - MZM_1998_63_2_a9
ER  - 
%0 Journal Article
%A T. E. Panov
%T Classification up to cobordism of manifolds with simple action of $\mathbb Z/p$
%J Matematičeskie zametki
%D 1998
%P 260-268
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a9/
%G ru
%F MZM_1998_63_2_a9
T. E. Panov. Classification up to cobordism of manifolds with simple action of $\mathbb Z/p$. Matematičeskie zametki, Tome 63 (1998) no. 2, pp. 260-268. http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a9/

[1] Konner P., Floid E., Gladkie periodicheskie otobrazheniya, Mir, M., 1969

[2] Novikov S. P., “Metody algebraicheskoi topologii s tochki zreniya teorii kobordizmov”, Izv. AN SSSR. Ser. matem., 31 (1967), 855–951 | MR | Zbl

[3] Bukhshtaber V. M., Novikov S. P., “Formalnye gruppy, stepennye sistemy i operatory Adamsa”, Matem. sb., 84 (126) (1971), 81–118 | MR | Zbl

[4] Kasparov G. G., “Invarianty klassicheskikh linzovykh mnogoobrazii v teorii kobordizmov”, Izv. AN SSSR. Ser. matem., 33 (1969), 735–747 | MR | Zbl

[5] Novikov S. P., “Operatory Adamsa i nepodvizhnye tochki”, Izv. AN SSSR. Ser. matem., 32 (1968), 1245–1263 | MR

[6] Bukhshtaber V. M., “Kharakter Chzhenya–Dolda v teorii kobordizmov, I”, Matem. sb., 83 (125) (1970), 575–595 | MR | Zbl

[7] Stong R., Zametki po teorii kobordizmov, Mir, M., 1973 | Zbl