Decomposition of finite pseudometric spaces
Matematičeskie zametki, Tome 63 (1998) no. 2, pp. 225-234
Cet article a éte moissonné depuis la source Math-Net.Ru
Here we define decomposable pseudometrics. A pseudometric is decomposable if it can be represented as the sum of two pseudometrics that are obtained in a way other than the multiplication all distances by a positive factor. We consider spaces consisting of $n$ points. We prove that there exist a finite number of indecomposable pseudometrics (that is, a basis) such that any pseudometric is a linear combination of basic pseudometrics with nonnegative coefficients. For $n\le7$, the basic pseudometrics are listed. A decomposability test is derived for finite pseudometric spaces. We also establish some other conditions of decomposability and indecomposability.
@article{MZM_1998_63_2_a6,
author = {M. \'E. Mikhailov},
title = {Decomposition of finite pseudometric spaces},
journal = {Matemati\v{c}eskie zametki},
pages = {225--234},
year = {1998},
volume = {63},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a6/}
}
M. É. Mikhailov. Decomposition of finite pseudometric spaces. Matematičeskie zametki, Tome 63 (1998) no. 2, pp. 225-234. http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a6/
[1] Kelli Dzh. L., Obschaya topologiya, Nauka, M., 1981
[2] Kuratovskii K., Topologiya, T. 1, Mir, M., 1966
[3] Kaplansky I., Set Theory and Metric Spaces, Chelsea, New York, 1977 | Zbl
[4] Zykov A. A., Osnovy teorii grafov, Nauka, M., 1987 | Zbl
[5] Ore O., Teoriya grafov, Nauka, M., 1980
[6] Beklemishev D. V., Dopolnitelnye glavy lineinoi algebry, Nauka, M., 1983 | Zbl