Decomposition of finite pseudometric spaces
Matematičeskie zametki, Tome 63 (1998) no. 2, pp. 225-234.

Voir la notice de l'article provenant de la source Math-Net.Ru

Here we define decomposable pseudometrics. A pseudometric is decomposable if it can be represented as the sum of two pseudometrics that are obtained in a way other than the multiplication all distances by a positive factor. We consider spaces consisting of $n$ points. We prove that there exist a finite number of indecomposable pseudometrics (that is, a basis) such that any pseudometric is a linear combination of basic pseudometrics with nonnegative coefficients. For $n\le7$, the basic pseudometrics are listed. A decomposability test is derived for finite pseudometric spaces. We also establish some other conditions of decomposability and indecomposability.
@article{MZM_1998_63_2_a6,
     author = {M. \'E. Mikhailov},
     title = {Decomposition of finite pseudometric spaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {225--234},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a6/}
}
TY  - JOUR
AU  - M. É. Mikhailov
TI  - Decomposition of finite pseudometric spaces
JO  - Matematičeskie zametki
PY  - 1998
SP  - 225
EP  - 234
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a6/
LA  - ru
ID  - MZM_1998_63_2_a6
ER  - 
%0 Journal Article
%A M. É. Mikhailov
%T Decomposition of finite pseudometric spaces
%J Matematičeskie zametki
%D 1998
%P 225-234
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a6/
%G ru
%F MZM_1998_63_2_a6
M. É. Mikhailov. Decomposition of finite pseudometric spaces. Matematičeskie zametki, Tome 63 (1998) no. 2, pp. 225-234. http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a6/

[1] Kelli Dzh. L., Obschaya topologiya, Nauka, M., 1981

[2] Kuratovskii K., Topologiya, T. 1, Mir, M., 1966

[3] Kaplansky I., Set Theory and Metric Spaces, Chelsea, New York, 1977 | Zbl

[4] Zykov A. A., Osnovy teorii grafov, Nauka, M., 1987 | Zbl

[5] Ore O., Teoriya grafov, Nauka, M., 1980

[6] Beklemishev D. V., Dopolnitelnye glavy lineinoi algebry, Nauka, M., 1983 | Zbl