Estimates of the fractal and Hausdorff dimensions of sets invariant under multimappings
Matematičeskie zametki, Tome 63 (1998) no. 2, pp. 217-224.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain estimates for the Hausdorff and fractal dimensions of sets $A\subset X$ invariant under multimappings $F\colon X\to 2X$ of a Banach space $X$ into the power set of $X$.
@article{MZM_1998_63_2_a5,
     author = {V. S. Mel'nik},
     title = {Estimates of the fractal and {Hausdorff} dimensions of sets invariant under multimappings},
     journal = {Matemati\v{c}eskie zametki},
     pages = {217--224},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a5/}
}
TY  - JOUR
AU  - V. S. Mel'nik
TI  - Estimates of the fractal and Hausdorff dimensions of sets invariant under multimappings
JO  - Matematičeskie zametki
PY  - 1998
SP  - 217
EP  - 224
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a5/
LA  - ru
ID  - MZM_1998_63_2_a5
ER  - 
%0 Journal Article
%A V. S. Mel'nik
%T Estimates of the fractal and Hausdorff dimensions of sets invariant under multimappings
%J Matematičeskie zametki
%D 1998
%P 217-224
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a5/
%G ru
%F MZM_1998_63_2_a5
V. S. Mel'nik. Estimates of the fractal and Hausdorff dimensions of sets invariant under multimappings. Matematičeskie zametki, Tome 63 (1998) no. 2, pp. 217-224. http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a5/

[1] Babin A. V., Vishik M. I., Attraktory evolyutsionnykh vklyuchenii, Nauka, M., 1989 | Zbl

[2] Ladyzhenskaya O. A., “O nakhozhdenii minimalnykh globalnykh attraktorov dlya uravnenii Nave–Stoksa i drugikh uravnenii s chastnymi proizvodnymi”, UMN, 42:6 (1987), 25–60 | MR | Zbl

[3] Ladyzhenskaya O. A., “Ob otsenkakh fraktalnoi razmernosti i chisla opredelyayuschikh mod dlya invariantnykh mnozhestv dinamicheskikh sistem”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii, Zapiski nauch. sem. LOMI, 19, Nauka, L., 1987, 105–129 | Zbl

[4] Vishik M. I., Chepyzhov V. V., “Attraktory neavtonomnykh dinamicheskikh sistem i otsenka ikh razmernosti”, Matem. zametki, 51:6 (1992), 141–143 | MR | Zbl

[5] Ladyzhenskaya O. A., “Nekotorye dopolneniya i utochneniya k moim publikatsiyam po teorii attraktorov dlya abstraktnykh polugrupp”, Kraevye zadachi matematicheskoi fiziki i smezhnye voprosy teorii funktsii, Zapiski nauch. sem. LOMI, 21, Nauka, L., 1990, 102–112

[6] Douady A., Oesterlé J., “Dimension de Hausdorff des attracteurs”, C. R. Acad. Sci. Paris. Sér. A, 290:24 (1980), 1135–1138 | MR | Zbl

[7] Ivanenko V. I., Melnik V. S., “Variatsionnye neravenstva i stabilizatsiya nelineinykh raspredelennykh sistem”, Dokl. AN USSR. Ser. A, 1989, no. 2, 67–70 | MR | Zbl

[8] Gurevich V., Volmen G., Teoriya razmernosti, M., 1948