Separately continuous selectors
Matematičeskie zametki, Tome 63 (1998) no. 2, pp. 209-216.

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence of separately continuous selectors of a separately lower and upper semicontinuous many-valued multivariate map is proved, provided its domain is a compact set and its range is a convex closed subset of a metrizable convex compact set.
@article{MZM_1998_63_2_a4,
     author = {Yu. E. Linke},
     title = {Separately continuous selectors},
     journal = {Matemati\v{c}eskie zametki},
     pages = {209--216},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a4/}
}
TY  - JOUR
AU  - Yu. E. Linke
TI  - Separately continuous selectors
JO  - Matematičeskie zametki
PY  - 1998
SP  - 209
EP  - 216
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a4/
LA  - ru
ID  - MZM_1998_63_2_a4
ER  - 
%0 Journal Article
%A Yu. E. Linke
%T Separately continuous selectors
%J Matematičeskie zametki
%D 1998
%P 209-216
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a4/
%G ru
%F MZM_1998_63_2_a4
Yu. E. Linke. Separately continuous selectors. Matematičeskie zametki, Tome 63 (1998) no. 2, pp. 209-216. http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a4/

[1] Aubin I. P., Cellina A., Differential Inclusions, Springer, Berlin, 1984

[2] Tolstonogov A. A., Differentsialnye vklyucheniya v banakhovom prostranstve, Nauka, Novosibirsk, 1986 | Zbl

[3] Bressan A., Colombo G., “Extensions and selections of maps with decomposable values”, Studia Math., 90:1 (1988), 69–86 | MR | Zbl

[4] Kucia A., Nowak A., “On Caratheodory type selectors in a Hilbert space”, Ann. Math. Sil., 1986, no. 14, 47–52 | MR | Zbl

[5] Phan V. C., “A density theorem with an application in relaxation of nonconvex-valued differential equations”, J. Math. Anal. Appl., 124:1 (1987), 1–14 | DOI | MR | Zbl

[6] Slezak W., “Concerning continuous selectors for multifunctions defined on product spaces”, Problemy Mat., 1987, no. 8, 31–46 | MR | Zbl

[7] Linke Yu. E., “Metod sublineinykh operatorov i zadachi o selektorakh”, Dokl. RAN, 347:4 (1996), 446–448 | MR | Zbl

[8] Michael E., “Continuous selections, 1”, Ann. Math., 63:2 (1956), 361–382 | DOI | MR | Zbl

[9] Michael E., “A selection theorem”, Proc. Amer. Math. Soc., 17 (1966), 1404–1407 | DOI | MR

[10] Corson H. H., Lindenstraus I., “Continuous selections with non-metrizable range”, Trans. Amer. Math. Soc., 121:2 (1966), 492–504 | DOI | MR | Zbl

[11] Hasumi M., “A continuous selection theorem for extremally disconnected spaces”, Math. Ann., 179:2 (1969), 83–89 | DOI | MR | Zbl

[12] Linke Yu. E., “Sublineinye prostranstva so znacheniyami v prostranstvakh nepreryvnykh funktsii”, Dokl. AN SSSR, 228:3 (1976), 540–542 | MR | Zbl

[13] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, IL, M., 1962

[14] Vulikh B. Z., Vvedenie v teoriyu poluuporyadochennykh prostranstv, Fizmatgiz, M., 1961

[15] Linke Yu. E., “Ob opornykh mnozhestvakh sublineinykh operatorov”, Dokl. AN SSSR, 207:3 (1972), 531–533 | MR | Zbl

[16] Linke Yu. E., “Ob opornykh mnozhestvakh sublineinykh operatorov so znacheniyami v $C(Q)$”, Optimizatsiya, no. 8 (25), Novosibirsk, 1972, 52–70 | MR

[17] Burbaki N., Obschaya topologiya. Osnovnye struktury, Nauka, M., 1968

[18] Linke Yu. E., “Sublineinye operatory i prostranstva Lindenshtraussa”, Dokl. AN SSSR, 234:1 (1977), 26–29 | MR | Zbl