Strongly regular growth of entire functions of order zero
Matematičeskie zametki, Tome 63 (1998) no. 2, pp. 196-208
Cet article a éte moissonné depuis la source Math-Net.Ru
For entire functions of order zero we introduce a new concept of regularity of growth, which is shown to possess properties similar to those which characterize the concept of totally regular growth of entire functions of finite order in the sense of Levin–Pflüger.
@article{MZM_1998_63_2_a3,
author = {N. V. Zabolotskii},
title = {Strongly regular growth of entire functions of order zero},
journal = {Matemati\v{c}eskie zametki},
pages = {196--208},
year = {1998},
volume = {63},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a3/}
}
N. V. Zabolotskii. Strongly regular growth of entire functions of order zero. Matematičeskie zametki, Tome 63 (1998) no. 2, pp. 196-208. http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a3/
[1] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Gostekhizdat, M., 1956
[2] Goldberg A. A., Ostrovskii I. V., “O proizvodnykh i pervoobraznykh tselykh funktsii vpolne regulyarnogo rosta”, Teoriya funktsii, funktsion. analiz i ikh prilozh., 1973, no. 18, 70–81
[3] Goldberg A. A., Zabolotskii N. V., “Indeks kontsentratsii subgarmonicheskoi funktsii nulevogo poryadka”, Matem. zametki, 34:2 (1983), 227–236 | MR