Dynamics of elementary maps of dendrites
Matematičeskie zametki, Tome 63 (1998) no. 2, pp. 183-195.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of elementary map of a dendrite into itself is introduced. Arithmetical relations between the periods of periodic points are given; the structure of $\omega$-limit sets, sets of periodic and nonwandering points is described; the topological entropy of elementary maps is shown to be equal to 0. Examples are given illustrating the differences in the entropic properties of continuous maps of dendrites with a countable set of branch points and continuous maps of their
@article{MZM_1998_63_2_a2,
     author = {M. I. Voinova and L. S. Efremova},
     title = {Dynamics of elementary maps of dendrites},
     journal = {Matemati\v{c}eskie zametki},
     pages = {183--195},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a2/}
}
TY  - JOUR
AU  - M. I. Voinova
AU  - L. S. Efremova
TI  - Dynamics of elementary maps of dendrites
JO  - Matematičeskie zametki
PY  - 1998
SP  - 183
EP  - 195
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a2/
LA  - ru
ID  - MZM_1998_63_2_a2
ER  - 
%0 Journal Article
%A M. I. Voinova
%A L. S. Efremova
%T Dynamics of elementary maps of dendrites
%J Matematičeskie zametki
%D 1998
%P 183-195
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a2/
%G ru
%F MZM_1998_63_2_a2
M. I. Voinova; L. S. Efremova. Dynamics of elementary maps of dendrites. Matematičeskie zametki, Tome 63 (1998) no. 2, pp. 183-195. http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a2/

[1] Sharkovskii A. N., “Sosuschestvovanie tsiklov nepreryvnogo otobrazheniya pryamoi v sebya”, Ukr. matem. zh., 16:1 (1964), 61–71

[2] Misiurewicz M., “Horseshoes for mappings of the interval”, Bull. Acad. Polon. Sci. Ser. Sci. Math., 27:2 (1979), 167–169 | MR | Zbl

[3] Blokh A. M., “O “spektralnom razlozhenii” dlya kusochno-monotonnykh otobrazhenii otrezka”, UMN, 37:3 (1982), 175–176 | MR | Zbl

[4] Efremova L. S., “Periodicheskie orbity i stepen nepreryvnogo otobrazheniya okruzhnosti”, Differentsialnye i integralnye uravneniya, no. 2, GGU, Gorkii, 1978, 109–115

[5] Efremova L. S., Rakhmankulov R. G., “Teoremy sosuschestvovaniya periodicheskikh orbit endomorfizmov okruzhnosti”, Differentsialnye i integralnye uravneniya, no. 4, GGU, Gorkii, 1980, 116–118 | MR

[6] Efremova L. S., “Periodicheskie tochki nepreryvnogo otobrazheniya okruzhnosti”, IX Mezhdunarodnaya konferentsiya po nelineinym kolebaniyam, T. 2 (Kiev, 30.08.81–06.09.81), IM AN USSR, Kiev, 1984, 124–126 | MR

[7] Malkin M. I., “Periodicheskie orbity, entropiya i mnozhestva vrascheniya nepreryvnykh otobrazhenii okruzhnosti”, Ukr. matem. zh., 35:3 (1983), 327–332 | MR | Zbl

[8] Block L., Guckenheimer J., Misiurewicz M., Young L. S., “Periodic points and topological entropy of one-dimensional maps”, Lecture Notes in Math., 819, 1980, 18–34 | MR | Zbl

[9] Bernhardt C., “Periodic orbits of continuous mappings of the circle without fixed points”, Ergodic Theory Dynam. Systems, 1:4 (1981), 413–417 | DOI | MR | Zbl

[10] Alseda L., Llibre J., “A note on the set of periods for continuous maps of the circle which have degree one”, Proc. Amer. Math. Soc., 93:1 (1985), 133–138 | DOI | MR | Zbl

[11] Baldwin St., “An extension of Šarkovskii's theorem to the $n$-od”, Ergodic Theory Dynam. Systems, 11:2 (1991), 249–271 | DOI | MR | Zbl

[12] Baldwin St., “Some limitations toward extending Šarkovskii's theorem to connected linearly ordered spaces”, Houston J. Math., 17:1 (1991), 39–53 | MR | Zbl

[13] Alseda L., Llibre J., Misiurewicz M., “Periodic orbits of maps of $Y$”, Trans. Amer. Math. Soc., 313:2 (1989), 475–538 | DOI | MR | Zbl

[14] Llibre J., Misiurewicz M., “Horseshoes, entropy and periods for graph maps”, Topology, 32 (1993), 649–664 | DOI | MR | Zbl

[15] Blokh A. M., “Periods implying almost all periods, trees with snowflakes, and zero entropy maps”, Nonlinearity, 5 (1992), 1375–1382 | DOI | MR | Zbl

[16] Kuratovskii K., Topologiya, T. 2, Mir, M., 1969

[17] Ayres W. L., “Some generalization of the Scherrer fixed point theorem”, Fund. Math., 16 (1930), 332–336

[18] Sharkovskii A. N., “O prityagivayuschikh i prityagivayuschikhsya mnozhestvakh”, Dokl. AN SSSR, 160:5 (1965), 1036–1038 | MR

[19] Kuratovskii K., Topologiya, T. 1, Mir, M., 1966

[20] Dinaburg E. I., “Svyaz mezhdu razlichnymi entropiinymi kharakteristikami dinamicheskikh sistem”, Izv. AN SSSR. Ser. matem., 35:2 (1971), 324–366 | MR | Zbl