Dynamics of elementary maps of dendrites
Matematičeskie zametki, Tome 63 (1998) no. 2, pp. 183-195
Voir la notice de l'article provenant de la source Math-Net.Ru
The notion of elementary map of a dendrite into itself is introduced. Arithmetical relations between the periods of periodic points are given; the structure of $\omega$-limit sets, sets of periodic and nonwandering points is described; the topological entropy of elementary maps is shown to be equal to 0. Examples are given illustrating the differences in the entropic properties of continuous maps of dendrites with a countable set of branch points and continuous maps of their
@article{MZM_1998_63_2_a2,
author = {M. I. Voinova and L. S. Efremova},
title = {Dynamics of elementary maps of dendrites},
journal = {Matemati\v{c}eskie zametki},
pages = {183--195},
publisher = {mathdoc},
volume = {63},
number = {2},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a2/}
}
M. I. Voinova; L. S. Efremova. Dynamics of elementary maps of dendrites. Matematičeskie zametki, Tome 63 (1998) no. 2, pp. 183-195. http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a2/