Joinings of the action of the group $\operatorname{GL}(n,\mathbb Z)$ on the $n$-dimensional torus
Matematičeskie zametki, Tome 63 (1998) no. 2, pp. 306-308.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1998_63_2_a18,
     author = {A. A. Prikhod'ko},
     title = {Joinings of the action of the group $\operatorname{GL}(n,\mathbb Z)$ on the $n$-dimensional torus},
     journal = {Matemati\v{c}eskie zametki},
     pages = {306--308},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a18/}
}
TY  - JOUR
AU  - A. A. Prikhod'ko
TI  - Joinings of the action of the group $\operatorname{GL}(n,\mathbb Z)$ on the $n$-dimensional torus
JO  - Matematičeskie zametki
PY  - 1998
SP  - 306
EP  - 308
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a18/
LA  - ru
ID  - MZM_1998_63_2_a18
ER  - 
%0 Journal Article
%A A. A. Prikhod'ko
%T Joinings of the action of the group $\operatorname{GL}(n,\mathbb Z)$ on the $n$-dimensional torus
%J Matematičeskie zametki
%D 1998
%P 306-308
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a18/
%G ru
%F MZM_1998_63_2_a18
A. A. Prikhod'ko. Joinings of the action of the group $\operatorname{GL}(n,\mathbb Z)$ on the $n$-dimensional torus. Matematičeskie zametki, Tome 63 (1998) no. 2, pp. 306-308. http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a18/

[1] del Junco A., Rudolph D., Ergodic Theory Dynam. Systems, 7:4 (1987), 531–557 | MR | Zbl

[2] Park K., Proc. Amer. Math. Soc., 114:4 (1992), 955–963 | DOI | MR | Zbl