Functional solutions of the problem of discontinuity disintegration
Matematičeskie zametki, Tome 63 (1998) no. 2, pp. 280-288.

Voir la notice de l'article provenant de la source Math-Net.Ru

A definition is given of functional solutions of the problem of discontinuity disintegration, and an example of such a solution is presented for the isoentropic system of gas dynamics.
@article{MZM_1998_63_2_a11,
     author = {V. A. Tupchiev},
     title = {Functional solutions of the problem of discontinuity disintegration},
     journal = {Matemati\v{c}eskie zametki},
     pages = {280--288},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a11/}
}
TY  - JOUR
AU  - V. A. Tupchiev
TI  - Functional solutions of the problem of discontinuity disintegration
JO  - Matematičeskie zametki
PY  - 1998
SP  - 280
EP  - 288
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a11/
LA  - ru
ID  - MZM_1998_63_2_a11
ER  - 
%0 Journal Article
%A V. A. Tupchiev
%T Functional solutions of the problem of discontinuity disintegration
%J Matematičeskie zametki
%D 1998
%P 280-288
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a11/
%G ru
%F MZM_1998_63_2_a11
V. A. Tupchiev. Functional solutions of the problem of discontinuity disintegration. Matematičeskie zametki, Tome 63 (1998) no. 2, pp. 280-288. http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a11/

[1] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | Zbl

[2] Galkin V. A., “Funktsionalnye resheniya zakonov sokhraneniya”, Dokl. AN SSSR, 310:4 (1990), 834–839 | MR | Zbl

[3] Vladimirov V. S., Obobschennye funktsii v matematicheskoi fizike, Nauka, M., 1976 | Zbl

[4] Edvards R., Funktsionalnyi analiz, Mir, M., 1969

[5] Kolmogorov A. N., Fomin S. V., Elementy funktsionalnogo analiza, Nauka, M., 1972

[6] Dafermos C., Di Perna R., “The Riemann problem for certain classes of hyperbolic systems of conservation laws”, Differential Equations, 20:1 (1976), 90–114 | DOI | MR | Zbl

[7] Mikusinskii Ya., Sikorskii R., Elementarnaya teoriya obobschennykh funktsii, IL, M., 1959

[8] Tupchiev V. A., “O razreshimosti v tselom zadachi Koshi dlya sistemy gazovoi dinamiki”, Dokl. RAN, 342:6 (1995), 747–749 | MR