Tychonoff property for linear groups
Matematičeskie zametki, Tome 63 (1998) no. 2, pp. 269-279
Cet article a éte moissonné depuis la source Math-Net.Ru
A criterion for a wide class of topological groups which includes linear discrete groups and Lie groups to be Tychonoff groups is established. The main result provides a criterion for an almost polycyclic group to have the Tychonoff property. By the well-known Tits alternative, this yields the required criterion for linear discrete groups. In conclusion it is pointed out that a particular case of the presented proof yields a Tychonoff property criterion for Lie groups. In addition, an example of a polycyclic group without Tychonoff subgroups of finite index is constructed.
@article{MZM_1998_63_2_a10,
author = {A. N. Starkov},
title = {Tychonoff property for linear groups},
journal = {Matemati\v{c}eskie zametki},
pages = {269--279},
year = {1998},
volume = {63},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a10/}
}
A. N. Starkov. Tychonoff property for linear groups. Matematičeskie zametki, Tome 63 (1998) no. 2, pp. 269-279. http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a10/
[1] Furstenberg H., “Translation-invariant cones of functions on semi-simple Lie groups”, Bull. Amer. Math. Soc., 71 (1965), 271–326 | DOI | MR | Zbl
[2] Conze J. P., Guivarc'h Y., Proprieté de droite fixe et fonctions propres des opérateurs de convolution, Preprint, Univ. de Rennes
[3] Grigorchuk R. I., On Tychonoff Groups, Preprint No. 95-12, Max-Planck-Inst. fur Mathematik, 1995
[4] Tits J., “Free subgroups in linear groups”, J. Algebra, 20 (1972), 250–270 | DOI | MR | Zbl
[5] Dei M. M., Normirovannye lineinye prostranstva, IL, M., 1961
[6] Robertson A., Robertson B., Topologicheskie vektornye prostranstva, Mir, M., 1967 | Zbl
[7] Braun K., Kogomologii grupp, Nauka, M., 1987