Tychonoff property for linear groups
Matematičeskie zametki, Tome 63 (1998) no. 2, pp. 269-279.

Voir la notice de l'article provenant de la source Math-Net.Ru

A criterion for a wide class of topological groups which includes linear discrete groups and Lie groups to be Tychonoff groups is established. The main result provides a criterion for an almost polycyclic group to have the Tychonoff property. By the well-known Tits alternative, this yields the required criterion for linear discrete groups. In conclusion it is pointed out that a particular case of the presented proof yields a Tychonoff property criterion for Lie groups. In addition, an example of a polycyclic group without Tychonoff subgroups of finite index is constructed.
@article{MZM_1998_63_2_a10,
     author = {A. N. Starkov},
     title = {Tychonoff property for linear groups},
     journal = {Matemati\v{c}eskie zametki},
     pages = {269--279},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a10/}
}
TY  - JOUR
AU  - A. N. Starkov
TI  - Tychonoff property for linear groups
JO  - Matematičeskie zametki
PY  - 1998
SP  - 269
EP  - 279
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a10/
LA  - ru
ID  - MZM_1998_63_2_a10
ER  - 
%0 Journal Article
%A A. N. Starkov
%T Tychonoff property for linear groups
%J Matematičeskie zametki
%D 1998
%P 269-279
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a10/
%G ru
%F MZM_1998_63_2_a10
A. N. Starkov. Tychonoff property for linear groups. Matematičeskie zametki, Tome 63 (1998) no. 2, pp. 269-279. http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a10/

[1] Furstenberg H., “Translation-invariant cones of functions on semi-simple Lie groups”, Bull. Amer. Math. Soc., 71 (1965), 271–326 | DOI | MR | Zbl

[2] Conze J. P., Guivarc'h Y., Proprieté de droite fixe et fonctions propres des opérateurs de convolution, Preprint, Univ. de Rennes

[3] Grigorchuk R. I., On Tychonoff Groups, Preprint No. 95-12, Max-Planck-Inst. fur Mathematik, 1995

[4] Tits J., “Free subgroups in linear groups”, J. Algebra, 20 (1972), 250–270 | DOI | MR | Zbl

[5] Dei M. M., Normirovannye lineinye prostranstva, IL, M., 1961

[6] Robertson A., Robertson B., Topologicheskie vektornye prostranstva, Mir, M., 1967 | Zbl

[7] Braun K., Kogomologii grupp, Nauka, M., 1987