The algebraic structure of $H$-dissipative operators in a finite-dimensional space
Matematičeskie zametki, Tome 63 (1998) no. 2, pp. 163-169

Voir la notice de l'article provenant de la source Math-Net.Ru

We study properties of Jordan representations of $H$-dissipative operators in a finite-dimensional indefinite $H$-space. An algebraic proof is given of the fact that such operators always have maximal semidefinite invariant subspaces.
@article{MZM_1998_63_2_a0,
     author = {T. Ya. Azizov and A. I. Barsukov},
     title = {The algebraic structure of $H$-dissipative operators in a finite-dimensional space},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--169},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a0/}
}
TY  - JOUR
AU  - T. Ya. Azizov
AU  - A. I. Barsukov
TI  - The algebraic structure of $H$-dissipative operators in a finite-dimensional space
JO  - Matematičeskie zametki
PY  - 1998
SP  - 163
EP  - 169
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a0/
LA  - ru
ID  - MZM_1998_63_2_a0
ER  - 
%0 Journal Article
%A T. Ya. Azizov
%A A. I. Barsukov
%T The algebraic structure of $H$-dissipative operators in a finite-dimensional space
%J Matematičeskie zametki
%D 1998
%P 163-169
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a0/
%G ru
%F MZM_1998_63_2_a0
T. Ya. Azizov; A. I. Barsukov. The algebraic structure of $H$-dissipative operators in a finite-dimensional space. Matematičeskie zametki, Tome 63 (1998) no. 2, pp. 163-169. http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a0/