The algebraic structure of $H$-dissipative operators in a finite-dimensional space
Matematičeskie zametki, Tome 63 (1998) no. 2, pp. 163-169.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study properties of Jordan representations of $H$-dissipative operators in a finite-dimensional indefinite $H$-space. An algebraic proof is given of the fact that such operators always have maximal semidefinite invariant subspaces.
@article{MZM_1998_63_2_a0,
     author = {T. Ya. Azizov and A. I. Barsukov},
     title = {The algebraic structure of $H$-dissipative operators in a finite-dimensional space},
     journal = {Matemati\v{c}eskie zametki},
     pages = {163--169},
     publisher = {mathdoc},
     volume = {63},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a0/}
}
TY  - JOUR
AU  - T. Ya. Azizov
AU  - A. I. Barsukov
TI  - The algebraic structure of $H$-dissipative operators in a finite-dimensional space
JO  - Matematičeskie zametki
PY  - 1998
SP  - 163
EP  - 169
VL  - 63
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a0/
LA  - ru
ID  - MZM_1998_63_2_a0
ER  - 
%0 Journal Article
%A T. Ya. Azizov
%A A. I. Barsukov
%T The algebraic structure of $H$-dissipative operators in a finite-dimensional space
%J Matematičeskie zametki
%D 1998
%P 163-169
%V 63
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a0/
%G ru
%F MZM_1998_63_2_a0
T. Ya. Azizov; A. I. Barsukov. The algebraic structure of $H$-dissipative operators in a finite-dimensional space. Matematičeskie zametki, Tome 63 (1998) no. 2, pp. 163-169. http://geodesic.mathdoc.fr/item/MZM_1998_63_2_a0/

[1] Azizov T. Ya., Iokhvidov I. S., Osnovy teorii lineinykh operatorov v prostranstvakh s indefinitnoi metrikoi, Nauka, M., 1986

[2] Maltsev A. I., Osnovy lineinoi algebry, GITTL, M.–L., 1948

[3] Gohberg I., Lancaster P., Rodman L., Matrices and Indefinite Scalar Products, Birkhäuser, Basel, 1983

[4] Shkalikov A. A., “Operator pencils arising in elasticity and hydrodynamics: the instability index formula”, Operator Theory: Advances and Applications, 87, Birkhäuser, Basel, 1996, 258–285 | MR

[5] Azizov T. Ya., Sukhochëva L. I., “Novyi podkhod k dokazatelstvu teoremy o privedenii matrits k zhordanovoi forme”, Funktsionalnyi analiz. Lineinye prostranstva, Ulyanovsk, 1990, 3–5 | MR

[6] Kostyuchenko A. G., Shkalikov A. A., “Samosopryazhennye operatornye puchki i ellipticheskie zadachi”, Funktsion. analiz i ego prilozh., 17:2 (1983), 38–61 | MR | Zbl

[7] Shkalikov A. A., “O printsipakh otbora i svoistvakh chasti sobstvennykh i prisoedinennykh elementov puchkov operatorov”, Vestn. MGU. Ser. 1. Matem., mekh., 1988, no. 4, 16–25 | MR

[8] Shkalikov A. A., “Ellipticheskie uravneniya v gilbertovom prostranstve i svyazannye spektralnye zadachi”, Tr. sem. im. I. G. Petrovskogo, 14, Izd-vo Mosk. un-ta, M., 1989, 140–224 | Zbl

[9] Azizov T. Ya., Binding P. A., Bognar J., Najman B., “Nondegenerate Jordan subspaces of self-adjoint operators in indefinite spaces”, Linear Algebra Appl., 207 (1994), 37–48 | DOI | MR | Zbl

[10] Azizov T. Ya., “Invariantnye podprostranstva i kriterii polnoty sistemy kornevykh vektorov $J$-dissipativnykh operatorov v prostranstve Pontryagina $\Pi_\kappa$”, Dokl. AN SSSR, 200:5 (1971), 1015–1017 | MR | Zbl

[11] Krein M. G., Langer G., “O definitnykh podprostranstvakh i obobschennykh rezolventakh ermitova operatora v prostranstve $\Pi_\varkappa$”, Funktsion. analiz i ego prilozh., 5:2 (1971), 59–71 | MR | Zbl

[12] Ran A. C. M., Temme D., “Dissipative matrices and invariant maximal semidefinite subspaces”, Linear Algebra Appl., 212/213 (1994), 169–213 | DOI | MR | Zbl

[13] Azizov T. Ya., Langer H., “Some spectral properties of contractive and expansive operators in indefinite inner product spaces”, Math. Nachr., 162 (1993), 247–259 | DOI | MR | Zbl

[14] Azizov T. Ya., “Dissipativnye operatory v gilbertovom prostranstve s indefinitnoi metrikoi”, Izv. AN SSSR. Ser. matem., 37:3 (1973), 639–662 | MR | Zbl