Generalized differentiable product measures
Matematičeskie zametki, Tome 63 (1998) no. 1, pp. 37-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of measures on $\mathbb R^\infty$ determined by sequences of functions of finitely many variables is considered. An existence theorem for such measures is proved, and their properties are examined. Examples are presented.
@article{MZM_1998_63_1_a4,
     author = {A. I. Kirillov},
     title = {Generalized differentiable product measures},
     journal = {Matemati\v{c}eskie zametki},
     pages = {37--55},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a4/}
}
TY  - JOUR
AU  - A. I. Kirillov
TI  - Generalized differentiable product measures
JO  - Matematičeskie zametki
PY  - 1998
SP  - 37
EP  - 55
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a4/
LA  - ru
ID  - MZM_1998_63_1_a4
ER  - 
%0 Journal Article
%A A. I. Kirillov
%T Generalized differentiable product measures
%J Matematičeskie zametki
%D 1998
%P 37-55
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a4/
%G ru
%F MZM_1998_63_1_a4
A. I. Kirillov. Generalized differentiable product measures. Matematičeskie zametki, Tome 63 (1998) no. 1, pp. 37-55. http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a4/

[1] Neve Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969 | Zbl

[2] Vakhaniya N. N., Tarieladze V. I., Chobanyan S. A., Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, M., 1985 | Zbl

[3] Bogachev V. I., Smolyanov O. G., “Analiticheskie svoistva beskonechnomernykh raspredelenii”, UMN, 45:3 (1990), 3–83 | MR | Zbl

[4] Kirillov A. I., “O dvukh matematicheskikh problemakh kanonicheskogo kvantovaniya. III: Stokhasticheskaya mekhanika vakuuma”, TMF, 91:3 (1992), 377–395 | MR

[5] Kirillov A. I., “O dvukh matematicheskikh problemakh kanonicheskogo kvantovaniya, IV”, TMF, 93:2 (1992), 249–263 | MR

[6] Kirillov A. I., “O zadanii mer na funktsionalnykh prostranstvakh s pomoschyu chislovykh plotnostei i kontinualnykh integralov”, Matem. zametki, 53:5 (1993), 152–155 | MR | Zbl

[7] Kirillov A. I., “Brounovskoe dvizhenie so snosom v gilbertovom prostranstve i ego primenenie v teorii integrirovaniya”, Teoriya veroyatn. i ee primeneniya, 38:3 (1993), 629–634 | MR | Zbl

[8] Kirillov A. I., “Beskonechnomernyi analiz i kvantovaya teoriya kak ischisleniya semimartingalov”, UMN, 49:3 (1994), 43–92 | MR | Zbl

[9] Kirillov A. I., “O vosstanovlenii mer po ikh logarifmicheskim proizvodnym”, Izv. RAN. Ser. matem., 59:1 (1995), 121–138 | MR | Zbl

[10] Norin N. V., Smolyanov O. G., “Neskolko rezultatov o logarifmicheskikh proizvodnykh mer na lokalno vypuklom prostranstve”, Matem. zametki, 54:6 (1993), 135–138 | MR | Zbl

[11] Averbukh V. I., Smolyanov O. G., Fomin S. V., “Obobschennye funktsii i differentsialnye uravneniya v lineinykh prostranstvakh. I: Differentsiruemye mery”, Tr. MMO, 24, no. 133–174, URSS, M., 1971 | MR | Zbl

[12] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977

[13] Iosida K., Funktsionalnyi analiz, Mir, M., 1967

[14] Krasnoselskii M. A., Polozhitelnye resheniya operatornykh uravnenii, Fizmatgiz, M., 1962

[15] Albeverio S., Röckner M., Zhang T. S., Markov uniqueness for a class of infinite-dimensional Dirichlet operators, Preprint SISSA No. 223/92/FM, 1992