Asymptotics of solutions of infinite-dimensional homogeneous dynamical systems
Matematičeskie zametki, Tome 63 (1998) no. 1, pp. 115-126
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we study the connection between the uniform asymptotic stability and the power-law or exponential asymptotics of the solutions of infinite-dimensional systems (differential equations in Banach spaces, functional differential equations, and completely solvable multidimensional differential equations).
@article{MZM_1998_63_1_a11,
author = {D. N. Cheban},
title = {Asymptotics of solutions of infinite-dimensional homogeneous dynamical systems},
journal = {Matemati\v{c}eskie zametki},
pages = {115--126},
publisher = {mathdoc},
volume = {63},
number = {1},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a11/}
}
D. N. Cheban. Asymptotics of solutions of infinite-dimensional homogeneous dynamical systems. Matematičeskie zametki, Tome 63 (1998) no. 1, pp. 115-126. http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a11/