Asymptotics of solutions of infinite-dimensional homogeneous dynamical systems
Matematičeskie zametki, Tome 63 (1998) no. 1, pp. 115-126

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the connection between the uniform asymptotic stability and the power-law or exponential asymptotics of the solutions of infinite-dimensional systems (differential equations in Banach spaces, functional differential equations, and completely solvable multidimensional differential equations).
@article{MZM_1998_63_1_a11,
     author = {D. N. Cheban},
     title = {Asymptotics of solutions of infinite-dimensional homogeneous dynamical systems},
     journal = {Matemati\v{c}eskie zametki},
     pages = {115--126},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a11/}
}
TY  - JOUR
AU  - D. N. Cheban
TI  - Asymptotics of solutions of infinite-dimensional homogeneous dynamical systems
JO  - Matematičeskie zametki
PY  - 1998
SP  - 115
EP  - 126
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a11/
LA  - ru
ID  - MZM_1998_63_1_a11
ER  - 
%0 Journal Article
%A D. N. Cheban
%T Asymptotics of solutions of infinite-dimensional homogeneous dynamical systems
%J Matematičeskie zametki
%D 1998
%P 115-126
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a11/
%G ru
%F MZM_1998_63_1_a11
D. N. Cheban. Asymptotics of solutions of infinite-dimensional homogeneous dynamical systems. Matematičeskie zametki, Tome 63 (1998) no. 1, pp. 115-126. http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a11/