Surface measures in infinite-dimensional spaces
Matematičeskie zametki, Tome 63 (1998) no. 1, pp. 106-114

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct surface measures for surfaces of codimension $n\ge1$ in Banach spaces, and in a wide class of locally convex spaces. It is assumed that the determining function has a continuous derivative along a subspace.
@article{MZM_1998_63_1_a10,
     author = {O. V. Pugachev},
     title = {Surface measures in infinite-dimensional spaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {106--114},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a10/}
}
TY  - JOUR
AU  - O. V. Pugachev
TI  - Surface measures in infinite-dimensional spaces
JO  - Matematičeskie zametki
PY  - 1998
SP  - 106
EP  - 114
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a10/
LA  - ru
ID  - MZM_1998_63_1_a10
ER  - 
%0 Journal Article
%A O. V. Pugachev
%T Surface measures in infinite-dimensional spaces
%J Matematičeskie zametki
%D 1998
%P 106-114
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a10/
%G ru
%F MZM_1998_63_1_a10
O. V. Pugachev. Surface measures in infinite-dimensional spaces. Matematičeskie zametki, Tome 63 (1998) no. 1, pp. 106-114. http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a10/