Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1998_63_1_a0, author = {A. Yu. Aleksandrov}, title = {Stability of solutions of nonlinear systems with unbounded perturbations}, journal = {Matemati\v{c}eskie zametki}, pages = {3--8}, publisher = {mathdoc}, volume = {63}, number = {1}, year = {1998}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a0/} }
A. Yu. Aleksandrov. Stability of solutions of nonlinear systems with unbounded perturbations. Matematičeskie zametki, Tome 63 (1998) no. 1, pp. 3-8. http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a0/
[1] Malkin I. G., “Teorema ob ustoichivosti po pervomu priblizheniyu”, Dokl. AN SSSR, 76:6 (1951), 783–784 | MR | Zbl
[2] Krasovskii N. N., “Ob ustoichivosti po pervomu priblizheniyu”, PMM, 19:5 (1955), 516–530 | MR | Zbl
[3] Zubov V. I., Ustoichivost dvizheniya, Vysshaya shkola, M., 1973 | Zbl
[4] Barbashin E. A., Funktsii Lyapunova, Nauka, M., 1970 | Zbl
[5] Aleksandrov A. Yu., Prasolov S. A., “Ob ustoichivosti sistem lineinykh differentsialnykh uravnenii s rekurrentnymi koeffitsientami”, Izv. RAN. Teoriya i sistemy upravleniya, 1995, no. 3, 8–14
[6] Aleksandrov A. Yu., “Ob ustoichivosti reshenii nekotorogo klassa nelineinykh nestatsionarnykh differentsialnykh uravnenii”, Differentsialnye uravneniya i ikh prilozheniya, Materialy Mezhdunarodnoi konferentsii (22–24 dekabrya 1994 g.), Izd-vo Mordovskogo un-ta, Saransk, 1995, 126–132
[7] Zubov V. I., Kolebaniya i volny, Izd-vo LGU, L., 1989
[8] Kanevskii A. Ya., Reizin L. E., “Postroenie odnorodnykh funktsii Lyapunova–Krasovskogo”, Differents. uravneniya, 9:2 (1973), 251–259 | MR | Zbl