Stability of solutions of nonlinear systems with unbounded perturbations
Matematičeskie zametki, Tome 63 (1998) no. 1, pp. 3-8

Voir la notice de l'article provenant de la source Math-Net.Ru

We study systems of differential equations with perturbations that are unbounded functions of time. We suggest a method for constructing Lyapunov functions to determine conditions under which the perturbations do not affect the asymptotic stability of the solutions.
@article{MZM_1998_63_1_a0,
     author = {A. Yu. Aleksandrov},
     title = {Stability of solutions of nonlinear systems with unbounded perturbations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--8},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a0/}
}
TY  - JOUR
AU  - A. Yu. Aleksandrov
TI  - Stability of solutions of nonlinear systems with unbounded perturbations
JO  - Matematičeskie zametki
PY  - 1998
SP  - 3
EP  - 8
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a0/
LA  - ru
ID  - MZM_1998_63_1_a0
ER  - 
%0 Journal Article
%A A. Yu. Aleksandrov
%T Stability of solutions of nonlinear systems with unbounded perturbations
%J Matematičeskie zametki
%D 1998
%P 3-8
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a0/
%G ru
%F MZM_1998_63_1_a0
A. Yu. Aleksandrov. Stability of solutions of nonlinear systems with unbounded perturbations. Matematičeskie zametki, Tome 63 (1998) no. 1, pp. 3-8. http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a0/