Stability of solutions of nonlinear systems with unbounded perturbations
Matematičeskie zametki, Tome 63 (1998) no. 1, pp. 3-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study systems of differential equations with perturbations that are unbounded functions of time. We suggest a method for constructing Lyapunov functions to determine conditions under which the perturbations do not affect the asymptotic stability of the solutions.
@article{MZM_1998_63_1_a0,
     author = {A. Yu. Aleksandrov},
     title = {Stability of solutions of nonlinear systems with unbounded perturbations},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--8},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a0/}
}
TY  - JOUR
AU  - A. Yu. Aleksandrov
TI  - Stability of solutions of nonlinear systems with unbounded perturbations
JO  - Matematičeskie zametki
PY  - 1998
SP  - 3
EP  - 8
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a0/
LA  - ru
ID  - MZM_1998_63_1_a0
ER  - 
%0 Journal Article
%A A. Yu. Aleksandrov
%T Stability of solutions of nonlinear systems with unbounded perturbations
%J Matematičeskie zametki
%D 1998
%P 3-8
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a0/
%G ru
%F MZM_1998_63_1_a0
A. Yu. Aleksandrov. Stability of solutions of nonlinear systems with unbounded perturbations. Matematičeskie zametki, Tome 63 (1998) no. 1, pp. 3-8. http://geodesic.mathdoc.fr/item/MZM_1998_63_1_a0/

[1] Malkin I. G., “Teorema ob ustoichivosti po pervomu priblizheniyu”, Dokl. AN SSSR, 76:6 (1951), 783–784 | MR | Zbl

[2] Krasovskii N. N., “Ob ustoichivosti po pervomu priblizheniyu”, PMM, 19:5 (1955), 516–530 | MR | Zbl

[3] Zubov V. I., Ustoichivost dvizheniya, Vysshaya shkola, M., 1973 | Zbl

[4] Barbashin E. A., Funktsii Lyapunova, Nauka, M., 1970 | Zbl

[5] Aleksandrov A. Yu., Prasolov S. A., “Ob ustoichivosti sistem lineinykh differentsialnykh uravnenii s rekurrentnymi koeffitsientami”, Izv. RAN. Teoriya i sistemy upravleniya, 1995, no. 3, 8–14

[6] Aleksandrov A. Yu., “Ob ustoichivosti reshenii nekotorogo klassa nelineinykh nestatsionarnykh differentsialnykh uravnenii”, Differentsialnye uravneniya i ikh prilozheniya, Materialy Mezhdunarodnoi konferentsii (22–24 dekabrya 1994 g.), Izd-vo Mordovskogo un-ta, Saransk, 1995, 126–132

[7] Zubov V. I., Kolebaniya i volny, Izd-vo LGU, L., 1989

[8] Kanevskii A. Ya., Reizin L. E., “Postroenie odnorodnykh funktsii Lyapunova–Krasovskogo”, Differents. uravneniya, 9:2 (1973), 251–259 | MR | Zbl