Estimates of polynomials orthogonal with respect to the Legendre--Sobolev inner product
Matematičeskie zametki, Tome 62 (1997) no. 6, pp. 871-880.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the Legendre–Sobolev orthonormal polynomials $\widehat B_n(x)=\widehat B_n(x;M,N)$ depending on the parameters $M\ge0$, $N\ge0$, weighted and uniform estimates on the orthogonality interval are obtained. It is shown that, unlike the Legendre orthonormal polynomials, the polynomials $\widehat B_n(x)$ for $M>0$, $N>0$ decay at the rate of $n^{-3/2}$ at the points 1 and -1. The values of $\widehat B'_n(\pm1)$ are calculated.
@article{MZM_1997_62_6_a7,
     author = {F. Marcellan and B. P. Osilenker},
     title = {Estimates of polynomials orthogonal with respect to the {Legendre--Sobolev} inner product},
     journal = {Matemati\v{c}eskie zametki},
     pages = {871--880},
     publisher = {mathdoc},
     volume = {62},
     number = {6},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a7/}
}
TY  - JOUR
AU  - F. Marcellan
AU  - B. P. Osilenker
TI  - Estimates of polynomials orthogonal with respect to the Legendre--Sobolev inner product
JO  - Matematičeskie zametki
PY  - 1997
SP  - 871
EP  - 880
VL  - 62
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a7/
LA  - ru
ID  - MZM_1997_62_6_a7
ER  - 
%0 Journal Article
%A F. Marcellan
%A B. P. Osilenker
%T Estimates of polynomials orthogonal with respect to the Legendre--Sobolev inner product
%J Matematičeskie zametki
%D 1997
%P 871-880
%V 62
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a7/
%G ru
%F MZM_1997_62_6_a7
F. Marcellan; B. P. Osilenker. Estimates of polynomials orthogonal with respect to the Legendre--Sobolev inner product. Matematičeskie zametki, Tome 62 (1997) no. 6, pp. 871-880. http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a7/

[1] Bavinck H., Meijer H. G., “Orthogonal polynomials with respect to a symmetric inner product involving derivatives”, Appl. Anal., 33 (1992), 103–117 | DOI | MR

[2] Bavinck H., Meijer H. G., “On orthogonal polynomials with respect to an inner product involving derivatives: zeros and recurrence relations”, Indag. Math. (N.S.), 1 (1990), 7–18 | DOI | MR

[3] Alfaro M., Marcellan F., Meijer H. G., Rezola M. L., “Symmetric orthogonal polynomials for Sobolev-type inner products”, J. Math. Anal., 184 (1989), 360–381 | DOI | MR

[4] Evans W. D., Littlejohn L. L., Marcellan F., Markett C., Ronveaux A., “On recurrence relations for Sobolev orthogonal polynomials”, SIAM J. Math. Anal., 26 (1995), 446–467 | DOI | MR | Zbl

[5] Alfaro M., Marcellan F., Rezola M. L., Ronveaux A., “On orthogonal polynomials of Sobolev type: algebraic properties and zeros”, SIAM J. Math. Anal., 23 (1992), 737–757 | DOI | MR | Zbl

[6] Marcellan F., Alfaro M., Rezola M. L., “Orthogonal polynomials on Sobolev spaces: old and new results”, J. Comput. Appl. Math., 48 (1993), 113–132 | DOI | MR

[7] Suetin P. K., Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1979 | Zbl

[8] Guadalupe J. J., Perez M., Varona J. L., “Asymptotic behaviour of orthogonal polynomials relative to measures with mass points”, Mathematika, 40 (1993), 331–334 | MR

[9] Rafalson S. Z., “O polinomakh, ortogonalnykh s nagruzkoi”, Izv. vuzov. Matem., 1965, no. 3, 146–154 | MR

[10] Sege G., Ortogonalnye mnogochleny, GIFML, M., 1962