Estimates of polynomials orthogonal with respect to the Legendre--Sobolev inner product
Matematičeskie zametki, Tome 62 (1997) no. 6, pp. 871-880
Voir la notice de l'article provenant de la source Math-Net.Ru
For the Legendre–Sobolev orthonormal polynomials $\widehat B_n(x)=\widehat B_n(x;M,N)$ depending on the parameters $M\ge0$, $N\ge0$, weighted and uniform estimates on the orthogonality interval are obtained. It is shown that, unlike the Legendre orthonormal polynomials, the polynomials $\widehat B_n(x)$ for $M>0$, $N>0$ decay at the rate of $n^{-3/2}$ at the points 1 and -1. The values of $\widehat B'_n(\pm1)$ are calculated.
@article{MZM_1997_62_6_a7,
author = {F. Marcellan and B. P. Osilenker},
title = {Estimates of polynomials orthogonal with respect to the {Legendre--Sobolev} inner product},
journal = {Matemati\v{c}eskie zametki},
pages = {871--880},
publisher = {mathdoc},
volume = {62},
number = {6},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a7/}
}
TY - JOUR AU - F. Marcellan AU - B. P. Osilenker TI - Estimates of polynomials orthogonal with respect to the Legendre--Sobolev inner product JO - Matematičeskie zametki PY - 1997 SP - 871 EP - 880 VL - 62 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a7/ LA - ru ID - MZM_1997_62_6_a7 ER -
F. Marcellan; B. P. Osilenker. Estimates of polynomials orthogonal with respect to the Legendre--Sobolev inner product. Matematičeskie zametki, Tome 62 (1997) no. 6, pp. 871-880. http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a7/