An analog of the fundamental theorem of arithmetic in ordered groupoids
Matematičeskie zametki, Tome 62 (1997) no. 6, pp. 910-915
Cet article a éte moissonné depuis la source Math-Net.Ru
In the note we consider ordered groupoids with the Riesz interpolation property, that is, if $a_i\le b_j$ ($i,j=1,2$), then there exists a $c$ such that $a_i\le c\le b_j$ ($i,j=1,2$). For such groupoids possessing the descending chain condition for the positive cone and the property $$ \forall a,b \quad a\le b \implies\exists u,v \quad au=va=b, $$ a theorem analogous to the fundamental theorem of arithmetic is proved. The result is a generalization of known results for lattice-ordered monoids, loops, and quasigroups.
@article{MZM_1997_62_6_a11,
author = {V. A. Testov},
title = {An analog of the fundamental theorem of arithmetic in ordered groupoids},
journal = {Matemati\v{c}eskie zametki},
pages = {910--915},
year = {1997},
volume = {62},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a11/}
}
V. A. Testov. An analog of the fundamental theorem of arithmetic in ordered groupoids. Matematičeskie zametki, Tome 62 (1997) no. 6, pp. 910-915. http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a11/
[1] Birkgof G., Teoriya reshetok, Nauka, M., 1984
[2] Fuks L., Chastichno uporyadochennye algebraicheskie sistemy, Mir, M., 1965
[3] Evans T., “Lattice-ordered loops and quasigroups”, J. Algebra, 16:2 (1970), 218–226 | DOI | MR | Zbl
[4] Sklifos P. I., “Ob uporyadochennykh lupakh”, Algebra i logika, 9:6 (1970), 714–730 | MR | Zbl
[5] Testov V. A., “K teorii reshetochno uporyadochennykh kvazigrupp”, Tkani i kvazigruppy, Kalinin, 1981, 153–157 | MR | Zbl
[6] Bosbach B., “Lattice ordered binary systems”, Acta Sci. Math., 52 (1988), 257–289 | MR | Zbl
[7] Testov V. A., Reshetochno uporyadochennye gruppoidy, Dep. VINITI, No 119-93, 1993