Topology of the hyperspace of convex bodies of constant width
Matematičeskie zametki, Tome 62 (1997) no. 6, pp. 813-819
Voir la notice de l'article provenant de la source Math-Net.Ru
The hyperspace of all convex bodies of constant width in Euclidean space $\mathbb R^n$, $n\ge2$, is proved to be homeomorphic to a contractible $Q$-manifold ($Q$ denotes the Hilbert cube). The proof makes use of an explicitly constructed retraction of the entire hyperspace of convex bodies on the hyperspace of convex bodies of constant width.
@article{MZM_1997_62_6_a1,
author = {L. E. Bazilevich},
title = {Topology of the hyperspace of convex bodies of constant width},
journal = {Matemati\v{c}eskie zametki},
pages = {813--819},
publisher = {mathdoc},
volume = {62},
number = {6},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a1/}
}
L. E. Bazilevich. Topology of the hyperspace of convex bodies of constant width. Matematičeskie zametki, Tome 62 (1997) no. 6, pp. 813-819. http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a1/