Topology of the hyperspace of convex bodies of constant width
Matematičeskie zametki, Tome 62 (1997) no. 6, pp. 813-819.

Voir la notice de l'article provenant de la source Math-Net.Ru

The hyperspace of all convex bodies of constant width in Euclidean space $\mathbb R^n$, $n\ge2$, is proved to be homeomorphic to a contractible $Q$-manifold ($Q$ denotes the Hilbert cube). The proof makes use of an explicitly constructed retraction of the entire hyperspace of convex bodies on the hyperspace of convex bodies of constant width.
@article{MZM_1997_62_6_a1,
     author = {L. E. Bazilevich},
     title = {Topology of the hyperspace of convex bodies of constant width},
     journal = {Matemati\v{c}eskie zametki},
     pages = {813--819},
     publisher = {mathdoc},
     volume = {62},
     number = {6},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a1/}
}
TY  - JOUR
AU  - L. E. Bazilevich
TI  - Topology of the hyperspace of convex bodies of constant width
JO  - Matematičeskie zametki
PY  - 1997
SP  - 813
EP  - 819
VL  - 62
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a1/
LA  - ru
ID  - MZM_1997_62_6_a1
ER  - 
%0 Journal Article
%A L. E. Bazilevich
%T Topology of the hyperspace of convex bodies of constant width
%J Matematičeskie zametki
%D 1997
%P 813-819
%V 62
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a1/
%G ru
%F MZM_1997_62_6_a1
L. E. Bazilevich. Topology of the hyperspace of convex bodies of constant width. Matematičeskie zametki, Tome 62 (1997) no. 6, pp. 813-819. http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a1/

[1] Nadler S., Quinn J. E., Stavrokas N. M., “Hyperspaces of compact convex sets”, Bull. Polish Acad. Sci. Math., 25:4 (1977), 381–385 | MR | Zbl

[2] Bazilevich L. E., “Pro odnu ekzotichnu psevdovnutrishnist u giperprostori opuklikh kompaktiv”, Mat. metodi i fiz.-mekh. polya, 34 (1991), 15–18

[3] Bazylevych L. E., “On the hyperspace of strictly convex bodies”, Matem. Studi, 2 (1993), 83–86 | MR | Zbl

[4] Torunczyk H., “CE-images of the Hilbert cube and characterization of $Q$-manifolds”, Fund. Math., 106:1 (1980), 31–40 | MR | Zbl