Obstructions to the extension of partial maps
Matematičeskie zametki, Tome 62 (1997) no. 6, pp. 803-812

Voir la notice de l'article provenant de la source Math-Net.Ru

One of the most important problems in topology is the minimization (in some sense) of obstructions to extending a partial map $Z\hookleftarrow A\overset{f}{\to} X$, i.e., of a subset $F\subset Z\setminus A$ such that $f$ can be globally extended to its complement. It is shown that if $Z$ is a fixed metric space with $\dim Z\le n$ and $p,q\ge-1$ are fixed numbers, then obstructions to extending all partial maps $Z\hookleftarrow A\overset{f}{\to} X\in\operatorname{LC}^p\cap \operatorname{C}^q$ can be concentrated in preselected fairly thin subsets of $Z$.
@article{MZM_1997_62_6_a0,
     author = {S. M. Ageev and S. A. Bogatyi},
     title = {Obstructions to the extension of partial maps},
     journal = {Matemati\v{c}eskie zametki},
     pages = {803--812},
     publisher = {mathdoc},
     volume = {62},
     number = {6},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a0/}
}
TY  - JOUR
AU  - S. M. Ageev
AU  - S. A. Bogatyi
TI  - Obstructions to the extension of partial maps
JO  - Matematičeskie zametki
PY  - 1997
SP  - 803
EP  - 812
VL  - 62
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a0/
LA  - ru
ID  - MZM_1997_62_6_a0
ER  - 
%0 Journal Article
%A S. M. Ageev
%A S. A. Bogatyi
%T Obstructions to the extension of partial maps
%J Matematičeskie zametki
%D 1997
%P 803-812
%V 62
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a0/
%G ru
%F MZM_1997_62_6_a0
S. M. Ageev; S. A. Bogatyi. Obstructions to the extension of partial maps. Matematičeskie zametki, Tome 62 (1997) no. 6, pp. 803-812. http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a0/