Obstructions to the extension of partial maps
Matematičeskie zametki, Tome 62 (1997) no. 6, pp. 803-812.

Voir la notice de l'article provenant de la source Math-Net.Ru

One of the most important problems in topology is the minimization (in some sense) of obstructions to extending a partial map $Z\hookleftarrow A\overset{f}{\to} X$, i.e., of a subset $F\subset Z\setminus A$ such that $f$ can be globally extended to its complement. It is shown that if $Z$ is a fixed metric space with $\dim Z\le n$ and $p,q\ge-1$ are fixed numbers, then obstructions to extending all partial maps $Z\hookleftarrow A\overset{f}{\to} X\in\operatorname{LC}^p\cap \operatorname{C}^q$ can be concentrated in preselected fairly thin subsets of $Z$.
@article{MZM_1997_62_6_a0,
     author = {S. M. Ageev and S. A. Bogatyi},
     title = {Obstructions to the extension of partial maps},
     journal = {Matemati\v{c}eskie zametki},
     pages = {803--812},
     publisher = {mathdoc},
     volume = {62},
     number = {6},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a0/}
}
TY  - JOUR
AU  - S. M. Ageev
AU  - S. A. Bogatyi
TI  - Obstructions to the extension of partial maps
JO  - Matematičeskie zametki
PY  - 1997
SP  - 803
EP  - 812
VL  - 62
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a0/
LA  - ru
ID  - MZM_1997_62_6_a0
ER  - 
%0 Journal Article
%A S. M. Ageev
%A S. A. Bogatyi
%T Obstructions to the extension of partial maps
%J Matematičeskie zametki
%D 1997
%P 803-812
%V 62
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a0/
%G ru
%F MZM_1997_62_6_a0
S. M. Ageev; S. A. Bogatyi. Obstructions to the extension of partial maps. Matematičeskie zametki, Tome 62 (1997) no. 6, pp. 803-812. http://geodesic.mathdoc.fr/item/MZM_1997_62_6_a0/

[1] Borsuk K., Teoriya retraktov, Nauka, M., 1971

[2] Hu S. T., Theory of retracts, Wayne State Univ. Press, Detroit, 1965 | Zbl

[3] Eilenberg S., “Un théorème de dualité”, Fund. Math., 26 (1936), 280–282 | Zbl

[4] Borsuk K., “Un théorème sur les prolongements des transformations”, Fund. Math., 29 (1937), 161–166 | MR | Zbl

[5] Bogatyi S. A., “O metricheskikh retraktakh”, Dokl. AN SSSR, 204:3 (1972), 522–524 | MR | Zbl

[6] Levshenko B. T., “Razmernost metricheskikh prostranstv i retraktsiya”, Fund. Math., 66 (1969), 1–5 | MR

[7] Nikiforov V. A., “Prodolzhenie selektsii k mnogoznachnomu otobrazheniyu i teorema dvoistvennosti Eilenberga–Borsuka”, Vestn. MGU. Ser. 1. Matem., mekh., 1987, no. 6, 57–59 | MR

[8] Engelking P., “Closed mapping on complete metric spaces”, Fund. Math., 70 (1971), 103–107 | MR | Zbl

[9] Aleksandrov P. S., Pasynkov B. A., Vvedenie v teoriyu razmernosti, Nauka, M., 1974

[10] Fedorchuk V. V., Filippov V. V., Obschaya topologiya. Osnovnye konstruktsii, Izd-vo MGU, M., 1988 | Zbl

[11] Michael E., “Continuous selection, II”, Ann. Math. (2), 64:3 (1956), 562–580 | DOI | MR | Zbl

[12] Dranishnikov A. N., “Teorema Eilenberga–Borsuka dlya otobrazhenii v proizvolnyi kompleks”, Matem. sb., 184:4 (1994), 82–90 | MR