Strict inequalities for the derivatives of functions satisfying certain boundary conditions
Matematičeskie zametki, Tome 62 (1997) no. 5, pp. 712-724
Voir la notice de l'article provenant de la source Math-Net.Ru
For functions satisfying the boundary conditions
$$
f(0)=f'(0)=\dots=f^{(m)}(0)=0,\qquad
f(1)=f'(1)=\dots=f^{(l)}(1)=0,
$$
the following inequality with sharp constants in additive form is proved:
$$
\|f^{(n-1)}\|_{L_q(0,1)}
\le A\|f\|_{L_p(0,1)}+B\|f^{(n)}\|_{L_r(0,1)},
$$
where $n\ge2$, $0\le l\le n-2$, $-1\le m\le l$, $m+l\le n-3$, $1\le p,q,r\le\infty$.
@article{MZM_1997_62_5_a8,
author = {A. I. Zvyagintsev},
title = {Strict inequalities for the derivatives of functions satisfying certain boundary conditions},
journal = {Matemati\v{c}eskie zametki},
pages = {712--724},
publisher = {mathdoc},
volume = {62},
number = {5},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a8/}
}
TY - JOUR AU - A. I. Zvyagintsev TI - Strict inequalities for the derivatives of functions satisfying certain boundary conditions JO - Matematičeskie zametki PY - 1997 SP - 712 EP - 724 VL - 62 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a8/ LA - ru ID - MZM_1997_62_5_a8 ER -
A. I. Zvyagintsev. Strict inequalities for the derivatives of functions satisfying certain boundary conditions. Matematičeskie zametki, Tome 62 (1997) no. 5, pp. 712-724. http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a8/