Strict inequalities for the derivatives of functions satisfying certain boundary conditions
Matematičeskie zametki, Tome 62 (1997) no. 5, pp. 712-724

Voir la notice de l'article provenant de la source Math-Net.Ru

For functions satisfying the boundary conditions $$ f(0)=f'(0)=\dots=f^{(m)}(0)=0,\qquad f(1)=f'(1)=\dots=f^{(l)}(1)=0, $$ the following inequality with sharp constants in additive form is proved: $$ \|f^{(n-1)}\|_{L_q(0,1)} \le A\|f\|_{L_p(0,1)}+B\|f^{(n)}\|_{L_r(0,1)}, $$ where $n\ge2$, $0\le l\le n-2$, $-1\le m\le l$, $m+l\le n-3$, $1\le p,q,r\le\infty$.
@article{MZM_1997_62_5_a8,
     author = {A. I. Zvyagintsev},
     title = {Strict inequalities for the derivatives of functions satisfying certain boundary conditions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {712--724},
     publisher = {mathdoc},
     volume = {62},
     number = {5},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a8/}
}
TY  - JOUR
AU  - A. I. Zvyagintsev
TI  - Strict inequalities for the derivatives of functions satisfying certain boundary conditions
JO  - Matematičeskie zametki
PY  - 1997
SP  - 712
EP  - 724
VL  - 62
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a8/
LA  - ru
ID  - MZM_1997_62_5_a8
ER  - 
%0 Journal Article
%A A. I. Zvyagintsev
%T Strict inequalities for the derivatives of functions satisfying certain boundary conditions
%J Matematičeskie zametki
%D 1997
%P 712-724
%V 62
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a8/
%G ru
%F MZM_1997_62_5_a8
A. I. Zvyagintsev. Strict inequalities for the derivatives of functions satisfying certain boundary conditions. Matematičeskie zametki, Tome 62 (1997) no. 5, pp. 712-724. http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a8/