Compactness of support of solutions to nonlinear second-order elliptic and parabolic equations in a half-cylinder
Matematičeskie zametki, Tome 62 (1997) no. 5, pp. 700-711.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study equations of the form $$ \begin{gathered} u_{tt}+Lu+b(x,t)u_t=a(x,t)|u|^{\sigma-1}u, \\-u_t+Lu=a(x,t)|u|^{\sigma-1}u, \end{gathered} $$ where $L$ is a uniformly elliptic operator and $0\sigma1$. In the half-cylinder $\Pi_{0,\infty}=\{(x,t):x=(x_1,\dots,x_n)\in \Omega,\ t>0\}$, where $\Omega\subset\mathbb R^n$ is a bounded domain, we consider solutions satisfying the homogeneous Neumann condition for $x\in\partial\Omega $ and $t>0$. We find conditions under which these solutions have compact support and prove statements of the following type: $u(x,t)=o(t^\gamma)$ as $t\to\infty$, then there exists a $T$ such that $u(x,t)\equiv0$ for $t>T$. In this case $\gamma$ depends on the coefficients of the equation and on the exponent $\sigma$.
@article{MZM_1997_62_5_a7,
     author = {G. V. Grishina},
     title = {Compactness of support of solutions to nonlinear second-order elliptic and parabolic equations in a half-cylinder},
     journal = {Matemati\v{c}eskie zametki},
     pages = {700--711},
     publisher = {mathdoc},
     volume = {62},
     number = {5},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a7/}
}
TY  - JOUR
AU  - G. V. Grishina
TI  - Compactness of support of solutions to nonlinear second-order elliptic and parabolic equations in a half-cylinder
JO  - Matematičeskie zametki
PY  - 1997
SP  - 700
EP  - 711
VL  - 62
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a7/
LA  - ru
ID  - MZM_1997_62_5_a7
ER  - 
%0 Journal Article
%A G. V. Grishina
%T Compactness of support of solutions to nonlinear second-order elliptic and parabolic equations in a half-cylinder
%J Matematičeskie zametki
%D 1997
%P 700-711
%V 62
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a7/
%G ru
%F MZM_1997_62_5_a7
G. V. Grishina. Compactness of support of solutions to nonlinear second-order elliptic and parabolic equations in a half-cylinder. Matematičeskie zametki, Tome 62 (1997) no. 5, pp. 700-711. http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a7/

[1] Kondratiev V. A., Oleinik O. A., “On asymptotic behaviour of solutions of some nonlinear elliptic equations in unbounded domains”, Partial Differential Equations and Related Subjects, Pitman Res. Notes Math. Ser., 269, Longman Sci. Tech., Harlow, 1992, 163–195 | MR | Zbl

[2] Kondratev V. A., Oleinik O. A., “O povedenii na beskonechnosti reshenii odnogo klassa nelineinykh ellipticheskikh uravnenii v tsilindricheskoi oblasti”, Dokl. RAN, 341:4 (1995), 446–449 | MR | Zbl

[3] Diaz J. I., Solucionos con soporte compacto para ciertos problemas semilineares, Editorial Univ. Complutense Madrid, Madrid, 1976 | Zbl

[4] Veron L., “Equations d'évolution semi-linéaires du second ordre dans $L^1$”, Rev. Roumaine Math. Pures Appl., 27:1 (1982), 95–123 | MR | Zbl

[5] Diaz J. I., Nonlinear partial differential equations and free boundaries, 1, Pitman Res. Notes Math. Ser., 106, Longman Sci. Tech., Harlow, 1985 | Zbl

[6] Kondratev V. A., Landis E. M., “O kachestvennykh svoistvakh reshenii odnogo nelineinogo uravneniya vtorogo poryadka”, Matem. sb., 135 (177):3 (1988), 346–360 | Zbl

[7] Landis E. M., “Some properties of the solution of degenerating semilinear elliptic inequalities”, Russian J. Math. Phys., 1:4 (1993), 483–494 | MR | Zbl

[8] Landis E. M., “O “mertvoi zone” dlya polulineinykh vyrozhdayuschikhsya ellipticheskikh neravenstv”, Differents. uravneniya, 29:3 (1993), 414–423 | MR | Zbl

[9] Kalashnikov A. S., “O vozmuschenii kriticheskikh pokazatelei v nekotorykh nelineinykh zadachakh matematicheskoi fiziki”, Dokl. RAN, 337:3 (1994), 320–322 | Zbl

[10] Chechkin F. A., “Ob asimptotike reshenii odnogo klassa nelineinykh ellipticheskikh uravnenii v tsilindricheskoi oblasti”, UMN, 49:4 (1994), 181–182 | MR | Zbl

[11] Kondratiev V. A., Veron L., Asymptotic homogeneisation of solution of some nonlinear parabolic and elliptic equations, Preprint No. 76/94, Univ. de Tours, France, 1994

[12] Antontsev S. N., Lokalizatsiya reshenii vyrozhdayuschikhsya uravnenii mekhaniki sploshnoi sredy, In-t gidrodinamiki SO AN SSSR, Novosibirsk, 1986

[13] Chistyakov V. V., “O svoistvakh reshenii polulineinykh parabolicheskikh uravnenii vtorogo poryadka”, Tr. sem. im. I. G. Petrovskogo, 15, Izd-vo Mosk. un-ta, M., 1991, 70–107 | MR | Zbl

[14] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | Zbl

[15] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967