On the interpolation of some generalized function spaces of different anisotropy
Matematičeskie zametki, Tome 62 (1997) no. 5, pp. 666-672
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper, the interpolation properties of the spaces $H_p^s(\nu;\mathbb R_n)$ of Sobolev–Liouville type and the spaces $B_{p,q}^s(\mu;\mathbb R_n)$ of Nikol'skii–Besov type generated by functions of polynomial growth that are infinitely differentiable outside of the origin are studied. Interpolation formulas for the pairs $\{H(\nu_0),H(\nu_1)\}$ and $\{B(\mu_0),B(\mu_1)\}$ of spaces of the above types for which the anisotropies of the interpolated spaces do not depend on each other are proved. The investigated spaces, for certain specification of the generating functions, coincide with the classical (isotropic and anisotropic) Sobolev–Liouville and Nikol'skii–Besov spaces.
@article{MZM_1997_62_5_a2,
author = {A. G. Bagdasarian},
title = {On the interpolation of some generalized function spaces of different anisotropy},
journal = {Matemati\v{c}eskie zametki},
pages = {666--672},
publisher = {mathdoc},
volume = {62},
number = {5},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a2/}
}
A. G. Bagdasarian. On the interpolation of some generalized function spaces of different anisotropy. Matematičeskie zametki, Tome 62 (1997) no. 5, pp. 666-672. http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a2/