On approximation of the ``Membrane'' Schr\"odinger operator by the ``Crystal'' operator
Matematičeskie zametki, Tome 62 (1997) no. 5, pp. 773-781

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $V(x)$, $x=(s_1,x_2,x_3)$, be a potential periodic in $x_1,x_2$ and exponentially decreasing as $|x_3|\to\infty$, and let $V_N(x)$ be the sum of shifts $V\bigl(x-(0,0,Nn_3)\bigr)$ over all integer $n_3$. We prove that the spectrum and eigenfunctions (not necessarily in the class $L^2$) of the Schrödinger operator with potential $V_N$, considered in a box, approximate the spectrum and eigenfunctions of the operator with potential $V$ and, for the negative part of the spectrum, the approximation converges exponentially in $N\to\infty$.
@article{MZM_1997_62_5_a13,
     author = {Yu. P. Chuburin},
     title = {On approximation of the {``Membrane''} {Schr\"odinger} operator by the {``Crystal''} operator},
     journal = {Matemati\v{c}eskie zametki},
     pages = {773--781},
     publisher = {mathdoc},
     volume = {62},
     number = {5},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a13/}
}
TY  - JOUR
AU  - Yu. P. Chuburin
TI  - On approximation of the ``Membrane'' Schr\"odinger operator by the ``Crystal'' operator
JO  - Matematičeskie zametki
PY  - 1997
SP  - 773
EP  - 781
VL  - 62
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a13/
LA  - ru
ID  - MZM_1997_62_5_a13
ER  - 
%0 Journal Article
%A Yu. P. Chuburin
%T On approximation of the ``Membrane'' Schr\"odinger operator by the ``Crystal'' operator
%J Matematičeskie zametki
%D 1997
%P 773-781
%V 62
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a13/
%G ru
%F MZM_1997_62_5_a13
Yu. P. Chuburin. On approximation of the ``Membrane'' Schr\"odinger operator by the ``Crystal'' operator. Matematičeskie zametki, Tome 62 (1997) no. 5, pp. 773-781. http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a13/