On approximation of the ``Membrane'' Schr\"odinger operator by the ``Crystal'' operator
Matematičeskie zametki, Tome 62 (1997) no. 5, pp. 773-781.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $V(x)$, $x=(s_1,x_2,x_3)$, be a potential periodic in $x_1,x_2$ and exponentially decreasing as $|x_3|\to\infty$, and let $V_N(x)$ be the sum of shifts $V\bigl(x-(0,0,Nn_3)\bigr)$ over all integer $n_3$. We prove that the spectrum and eigenfunctions (not necessarily in the class $L^2$) of the Schrödinger operator with potential $V_N$, considered in a box, approximate the spectrum and eigenfunctions of the operator with potential $V$ and, for the negative part of the spectrum, the approximation converges exponentially in $N\to\infty$.
@article{MZM_1997_62_5_a13,
     author = {Yu. P. Chuburin},
     title = {On approximation of the {``Membrane''} {Schr\"odinger} operator by the {``Crystal''} operator},
     journal = {Matemati\v{c}eskie zametki},
     pages = {773--781},
     publisher = {mathdoc},
     volume = {62},
     number = {5},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a13/}
}
TY  - JOUR
AU  - Yu. P. Chuburin
TI  - On approximation of the ``Membrane'' Schr\"odinger operator by the ``Crystal'' operator
JO  - Matematičeskie zametki
PY  - 1997
SP  - 773
EP  - 781
VL  - 62
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a13/
LA  - ru
ID  - MZM_1997_62_5_a13
ER  - 
%0 Journal Article
%A Yu. P. Chuburin
%T On approximation of the ``Membrane'' Schr\"odinger operator by the ``Crystal'' operator
%J Matematičeskie zametki
%D 1997
%P 773-781
%V 62
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a13/
%G ru
%F MZM_1997_62_5_a13
Yu. P. Chuburin. On approximation of the ``Membrane'' Schr\"odinger operator by the ``Crystal'' operator. Matematičeskie zametki, Tome 62 (1997) no. 5, pp. 773-781. http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a13/

[1] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, T. 4, Mir, M., 1982

[2] Skriganov M. M., Geometricheskie i arifmeticheskie metody v spektralnoi teorii mnogomernykh periodicheskikh operatorov, Tr. MIAN, 171, Nauka, M., 1985, 122 pp. | MR | Zbl

[3] Davies E. B., “Scattering from infinite sheets”, Math. Proc. Cambridge Philos. Soc., 82 (1977), 327–334 | DOI | MR | Zbl

[4] Mironov A. L., Oleinik V. L., “O granitsakh primenimosti metoda priblizheniya silnoi svyazi”, TMF, 99:1 (1994), 103–120 | MR | Zbl

[5] Chuburin Yu. P., O rasseyanii na kristallicheskoi plenke (spektr i asimptotika volnovykh funktsii uravneniya Shrëdingera), Preprint, FTI UNTs AN SSSR, Sverdlovsk, 1985

[6] Volf G. V., Chuburin Yu. P., Rubtsova L. A., “Osobennosti elektronnogo stroeniya kristallicheskikh plenok i ikh proyavlenie v poverkhnostnom rasseyanii elektronov nizkikh energii”, Poverkhnost, 10 (1991), 81–88

[7] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, T. 1, Mir, M., 1977

[8] Chuburin Yu. P., “O rasseyanii dlya operatora Shrëdingera v sluchae kristallicheskoi plenki”, TMF, 72:1 (1987), 120–131 | MR

[9] Chuburin Yu. P., “O resheniyakh uravneniya Shrëdingera v sluchae poluogranichennogo kristalla”, TMF, 98:1 (1994), 38–47 | MR | Zbl

[10] Tsikon Kh., Frëze R., Kirsh V., Saimon B., Operatory Shrëdingera s prilozheniyami k kvantovoi mekhanike i globalnoi geometrii, Mir, M., 1990