Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1997_62_5_a10, author = {Yu. S. Kolesov}, title = {Stability properties of cycles and tori of a simplest nonresonant wave-type equation}, journal = {Matemati\v{c}eskie zametki}, pages = {744--750}, publisher = {mathdoc}, volume = {62}, number = {5}, year = {1997}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a10/} }
Yu. S. Kolesov. Stability properties of cycles and tori of a simplest nonresonant wave-type equation. Matematičeskie zametki, Tome 62 (1997) no. 5, pp. 744-750. http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a10/
[1] Kolesov Yu. S., “Zadacha parazit–khozyain”, Dinamika biologicheskikh populyatsii, Izd-vo Gorkovskogo un-ta, Gorkii, 1984, 16–29
[2] Mischenko E. F., Kolesov Yu. S., Kolesov A. Yu., Rozov N. Kh., Periodicheskie dvizheniya i bifurkatsionnye protsessy v singulyarno vozmuschennykh sistemakh, Fizmatlit, M., 1995
[3] Kolesov A. Yu., Kolesov Yu. S., “Bifurkatsiya avtokolebanii singulyarno vozmuschennogo volnovogo uravneniya”, Dokl. AN SSSR, 315:2 (1990), 281–283 | MR | Zbl
[4] Kolesov Yu. S., “Asimptotika i ustoichivost nelineinykh parametricheskikh kolebanii singulyarno vozmuschennogo telegrafnogo uravneniya”, Matem. sb., 186:10 (1995), 57–72 | MR | Zbl
[5] Kolesov Yu. S., “Attraktory rezonansnykh uravnenii volnovogo tipa – razryvnye kolebaniya”, Matem. zametki, 56:1 (1994), 42–49 | MR
[6] Fomin V. N., Matematicheskaya teoriya parametricheskogo rezonansa v lineinykh raspredelennykh sistemakh, Izd-vo LGU, L., 1972
[7] Kolesov A. Yu., “Ustoichivost avtokolebanii telegrafnogo uravneniya, bifurtsiruyuschikh iz sostoyaniya ravnovesiya”, Matem. zametki, 51:2 (1992), 59–65 | MR | Zbl
[8] Samoilenko A. M., Elementy matematicheskoi teorii mnogochastotnykh kolebanii, Nauka, M., 1987
[9] Butenin N. V., Neimark Yu. I., Fufaev N. A., Vvedenie v teoriyu nelineinykh kolebanii, Nauka, M., 1976