Stability properties of cycles and tori of a simplest nonresonant wave-type equation
Matematičeskie zametki, Tome 62 (1997) no. 5, pp. 744-750.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a number of meaningful examples, nonresonant wave-type equations are shown to be characterized by periodic dynamics.
@article{MZM_1997_62_5_a10,
     author = {Yu. S. Kolesov},
     title = {Stability properties of cycles and tori of a simplest nonresonant wave-type equation},
     journal = {Matemati\v{c}eskie zametki},
     pages = {744--750},
     publisher = {mathdoc},
     volume = {62},
     number = {5},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a10/}
}
TY  - JOUR
AU  - Yu. S. Kolesov
TI  - Stability properties of cycles and tori of a simplest nonresonant wave-type equation
JO  - Matematičeskie zametki
PY  - 1997
SP  - 744
EP  - 750
VL  - 62
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a10/
LA  - ru
ID  - MZM_1997_62_5_a10
ER  - 
%0 Journal Article
%A Yu. S. Kolesov
%T Stability properties of cycles and tori of a simplest nonresonant wave-type equation
%J Matematičeskie zametki
%D 1997
%P 744-750
%V 62
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a10/
%G ru
%F MZM_1997_62_5_a10
Yu. S. Kolesov. Stability properties of cycles and tori of a simplest nonresonant wave-type equation. Matematičeskie zametki, Tome 62 (1997) no. 5, pp. 744-750. http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a10/

[1] Kolesov Yu. S., “Zadacha parazit–khozyain”, Dinamika biologicheskikh populyatsii, Izd-vo Gorkovskogo un-ta, Gorkii, 1984, 16–29

[2] Mischenko E. F., Kolesov Yu. S., Kolesov A. Yu., Rozov N. Kh., Periodicheskie dvizheniya i bifurkatsionnye protsessy v singulyarno vozmuschennykh sistemakh, Fizmatlit, M., 1995

[3] Kolesov A. Yu., Kolesov Yu. S., “Bifurkatsiya avtokolebanii singulyarno vozmuschennogo volnovogo uravneniya”, Dokl. AN SSSR, 315:2 (1990), 281–283 | MR | Zbl

[4] Kolesov Yu. S., “Asimptotika i ustoichivost nelineinykh parametricheskikh kolebanii singulyarno vozmuschennogo telegrafnogo uravneniya”, Matem. sb., 186:10 (1995), 57–72 | MR | Zbl

[5] Kolesov Yu. S., “Attraktory rezonansnykh uravnenii volnovogo tipa – razryvnye kolebaniya”, Matem. zametki, 56:1 (1994), 42–49 | MR

[6] Fomin V. N., Matematicheskaya teoriya parametricheskogo rezonansa v lineinykh raspredelennykh sistemakh, Izd-vo LGU, L., 1972

[7] Kolesov A. Yu., “Ustoichivost avtokolebanii telegrafnogo uravneniya, bifurtsiruyuschikh iz sostoyaniya ravnovesiya”, Matem. zametki, 51:2 (1992), 59–65 | MR | Zbl

[8] Samoilenko A. M., Elementy matematicheskoi teorii mnogochastotnykh kolebanii, Nauka, M., 1987

[9] Butenin N. V., Neimark Yu. I., Fufaev N. A., Vvedenie v teoriyu nelineinykh kolebanii, Nauka, M., 1976