Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1997_62_5_a0, author = {M. Azizov}, title = {The exact order of information-based complexity of weakly singular integral equations with periodic analytic coefficients}, journal = {Matemati\v{c}eskie zametki}, pages = {643--656}, publisher = {mathdoc}, volume = {62}, number = {5}, year = {1997}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a0/} }
TY - JOUR AU - M. Azizov TI - The exact order of information-based complexity of weakly singular integral equations with periodic analytic coefficients JO - Matematičeskie zametki PY - 1997 SP - 643 EP - 656 VL - 62 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a0/ LA - ru ID - MZM_1997_62_5_a0 ER -
%0 Journal Article %A M. Azizov %T The exact order of information-based complexity of weakly singular integral equations with periodic analytic coefficients %J Matematičeskie zametki %D 1997 %P 643-656 %V 62 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a0/ %G ru %F MZM_1997_62_5_a0
M. Azizov. The exact order of information-based complexity of weakly singular integral equations with periodic analytic coefficients. Matematičeskie zametki, Tome 62 (1997) no. 5, pp. 643-656. http://geodesic.mathdoc.fr/item/MZM_1997_62_5_a0/
[1] Wozniakowski H., “Information-based complexity”, Ann. Rev. Comput. Sci., 1 (1986), 318–380 | DOI
[2] Pereverzev S. V., “O slozhnosti zadachi nakhozhdeniya reshenii uravnenii Fredgolma vtorogo roda s gladkimi yadrami, II”, Ukr. matem. zh., 41:2 (1989), 189–193 | MR
[3] Pereverzev S. V., “Giperbolicheskii krest i slozhnosti priblizhennogo resheniya integralnykh uravnenii Fredgolma vtorogo roda s differentsiruemymi yadrami”, Sib. matem. zh., 32:1 (1991), 107–115 | MR | Zbl
[4] Frank K., Heinrich S., Pereverzev S. V., Information complexity of multivariate Fredholm integral equations in Sobolev classes, Technical Report No. 263/95, Univ. Kaiserslautern, Kaiserslautern, 1995
[5] Pereverzev S. V., Sharipov C. C., “Information complexity of the equations of the second kind with compact operators in Hilbert space”, J. Complexity, 8:2 (1992), 176–202 | DOI | MR | Zbl
[6] Makhkamov K. Sh., “O slozhnosti zadachi nakhozhdeniya reshenii slabo singulyarnykh integralnykh uravnenii”, Dokl. AN Ukrainy, 1994, no. 1, 28–34 | MR | Zbl
[7] Yan Y., “A fast numerical solution for a second kind boundary integral equation with a logarithmic kernel”, SIAM J. Numer. Anal., 31:2 (1994), 477–498 | DOI | MR | Zbl
[8] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, Izd-vo MGU, M., 1976
[9] Saranen J., Vainikko G., “Trigonometric collocation methods with product integration for boundary integral equations on closed curves”, SIAM J. Numer. Anal., 32:2 (1995), 2845–2851 | MR
[10] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | Zbl