Inequalities for sourcewise representable functions and their applications
Matematičeskie zametki, Tome 62 (1997) no. 4, pp. 564-576.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove a discrete and an integral version of an inequality for sourcewise representable functions and use them to derive the Wirtinger inequality and its generalizations.
@article{MZM_1997_62_4_a8,
     author = {R. Kh. Sadikova},
     title = {Inequalities for sourcewise representable functions and their applications},
     journal = {Matemati\v{c}eskie zametki},
     pages = {564--576},
     publisher = {mathdoc},
     volume = {62},
     number = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a8/}
}
TY  - JOUR
AU  - R. Kh. Sadikova
TI  - Inequalities for sourcewise representable functions and their applications
JO  - Matematičeskie zametki
PY  - 1997
SP  - 564
EP  - 576
VL  - 62
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a8/
LA  - ru
ID  - MZM_1997_62_4_a8
ER  - 
%0 Journal Article
%A R. Kh. Sadikova
%T Inequalities for sourcewise representable functions and their applications
%J Matematičeskie zametki
%D 1997
%P 564-576
%V 62
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a8/
%G ru
%F MZM_1997_62_4_a8
R. Kh. Sadikova. Inequalities for sourcewise representable functions and their applications. Matematičeskie zametki, Tome 62 (1997) no. 4, pp. 564-576. http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a8/

[1] Khardi G., Littlvud Dzh., Polia G., Neravenstva, IL, M., 1948

[2] Steklov V. A., Osnovnye zadachi matematicheskoi fiziki, Ch. I, II, Tipogr. RAN, Peterburg, 1922–1923

[3] Blyashke V., Krug i shar, Nauka, M., 1967

[4] Godunova E. K., Levin V. I., “O nekotorykh integralnykh neravenstvakh, soderzhaschikh proizvodnye”, Izv. vuzov. Matem., 1969, no. 12, 20–24 | MR | Zbl

[5] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Sib. otd. AN SSSR, Novosibirsk, 1962 | Zbl

[6] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969

[7] Buslaev A. P., Tikhomirov V. M., “Nekotorye voprosy nelineinogo analiza i teorii priblizhenii”, Dokl. AN SSSR, 283:1 (1985), 13–18 | MR | Zbl

[8] Buslaev A. P., Tikhomirov V. M., “Spektry nelineinykh differentsialnykh uravnenii i poperechniki sobolevskikh klassov”, Matem. sb., 181:12 (1990), 1587–1606

[9] Nguen Ten Nam, “Spektr nelineinykh integralnykh uravnenii i poperechniki funktsionalnykh klassov”, Matem. zametki, 53:4 (1993), 101–110 | Zbl

[10] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979

[11] Sadikova R. Kh., “Neravenstva dlya istokoobrazno predstavimykh funktsii”, Izv. vuzov. Matem., 1979, no. 11, 61–64 | MR | Zbl

[12] Sadikova R. Kh., Neravenstva s proizvodnymi, Dep. Izv. vuzov. Matem., No 2632-84, 1984

[13] Sadikova R. Kh., Neravenstva dlya proizvodnykh drobnogo poryadka, Dep. Izv. vuzov. Matem., No 3397-89, 1989

[14] Sadikova R. Kh., Obschii klass neravenstv s tochnymi konstantami, Diss. ... k. f.-m. n., Universitet druzhby narodov, M., 1990