Singularities of embedding operators between symmetric function spaces on $[0,1]$
Matematičeskie zametki, Tome 62 (1997) no. 4, pp. 549-563.

Voir la notice de l'article provenant de la source Math-Net.Ru

The properties of the identity embedding operator $I(X_1,X_2)$, $(X_1\subset X_2)$ between symmetric function spaces on $[0,1]$ such as weak compactness, strict singularity (in two versions), and the property of being absolutely summing are examined. Banach and quasi-Banach spaces are considered. A complete description of the linear hull closed with respect to measure of a sequence $(g_n^{(r)})$ of independent symmetric equidistributed random variables with $$ d(g_n^{(r)};t) =\operatorname{meas}\bigl(\omega: |g_n^{(r)}(\omega)|>t\bigr) =\frac 1{t^r},\qquad t\ge1,\quad 0\infty, $$ is obtained, and the boundaries for this space on the scale of symmetric spaces are found.
@article{MZM_1997_62_4_a7,
     author = {S. Ya. Novikov},
     title = {Singularities of embedding operators between symmetric function spaces on $[0,1]$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {549--563},
     publisher = {mathdoc},
     volume = {62},
     number = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a7/}
}
TY  - JOUR
AU  - S. Ya. Novikov
TI  - Singularities of embedding operators between symmetric function spaces on $[0,1]$
JO  - Matematičeskie zametki
PY  - 1997
SP  - 549
EP  - 563
VL  - 62
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a7/
LA  - ru
ID  - MZM_1997_62_4_a7
ER  - 
%0 Journal Article
%A S. Ya. Novikov
%T Singularities of embedding operators between symmetric function spaces on $[0,1]$
%J Matematičeskie zametki
%D 1997
%P 549-563
%V 62
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a7/
%G ru
%F MZM_1997_62_4_a7
S. Ya. Novikov. Singularities of embedding operators between symmetric function spaces on $[0,1]$. Matematičeskie zametki, Tome 62 (1997) no. 4, pp. 549-563. http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a7/

[1] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978

[2] Lozanovskii G. Ya., “O nekotorykh banakhovykh strukturakh”, Sib. matem. zh., 10:3 (1969), 584–599 | MR | Zbl

[3] Bukhvalov A. V., Veksler A. I., Lozanovskii G. Ya., “Banakhovy reshetki – nekotorye banakhovy aspekty teorii”, UMN, 34:2 (1979), 136–183 | MR

[4] Edvards R., Funktsionalnyi analiz, Mir, M., 1969

[5] Simons S., “On the Dunford–Pettis property”, Math. Ann., 216:3 (1975), 225–231 | DOI | MR | Zbl

[6] Pich A., Operatornye idealy, Mir, M., 1982

[7] Rudin U., Funktsionalnyi analiz, Mir, M., 1975

[8] Kislyakov S. V., “Absolyutno summiruyuschie operatory na disk-algebre”, Algebra i analiz, 3:4 (1991), 1–77 | MR

[9] Makarov B. M., “Absolyutno summiruyuschie operatory i nekotorye ikh prilozheniya”, Algebra i analiz, 3:2 (1991), 1–76

[10] Kadec M. I., Pelczynski A., “Bases, lacunary sequences and complemented subspaces in the space $L^p$”, Studia Math., 21:2 (1962), 161–176 | MR | Zbl

[11] Novikov S. Ya., Semenov E. M., Tokarev E. V., “Struktura podprostranstv prostranstv $\Lambda_p(\phi)$”, Dokl. AN SSSR, 247:3 (1979), 552–554 | MR | Zbl

[12] Rodin V. A., Semyonov E. M., “Rademacher series in symmetric spaces”, Anal. Math., 1:2 (1975), 161–176 | MR

[13] Hernandez F. L., Rodrigues-Salinas B., “On $\ell^p$-complemented copies in Orlicz spaces, II”, Israel J. Math., 68 (1989), 27–55 | DOI | MR | Zbl

[14] Bastero J., Hudzik H., Steinberg A., “On smallest and largest spaces among RI $p$-Banach function spaces ($0

1$)”, Indag. Math. (N.S.), 2:3 (1991), 283–288 | DOI | MR | Zbl

[15] Carothers N. L., Dilworth S. J., “Geometry of Lorentz Spaces via Interpolation”, Longhorn Notes, Funct. Anal. Seminar, The Univ. of Texas at Austin, 1985–86, 107–133

[16] Shiryaev A. N., Veroyatnost, Nauka, M., 1989

[17] Vakhaniya N. N., Tarieladze V. I., Chobanyan S. A., Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, M., 1985 | Zbl

[18] Lindenstrauss J., Zafriri L., Classical Banach Spaces, V. II, Springer, Berlin, 1979 | Zbl

[19] Novikov S. Ya., “Kotip i tip funktsionalnykh prostranstv Lorentsa”, Matem. zametki, 32:2 (1982), 213–221 | MR | Zbl