Generalized de Bruijn graphs
Matematičeskie zametki, Tome 62 (1997) no. 4, pp. 540-548.

Voir la notice de l'article provenant de la source Math-Net.Ru

Oriented graphs in which every pair of vertices can be connected by a unique path of given length (not depending on the choice of the pair of vertices) are studied. These graphs are a natural extension of the well-known de Bruijn graphs and retain their most important properties. Some results on the structure of and methods for constructing such graphs are obtained.
@article{MZM_1997_62_4_a6,
     author = {F. M. Malyshev and V. E. Tarakanov},
     title = {Generalized de {Bruijn} graphs},
     journal = {Matemati\v{c}eskie zametki},
     pages = {540--548},
     publisher = {mathdoc},
     volume = {62},
     number = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a6/}
}
TY  - JOUR
AU  - F. M. Malyshev
AU  - V. E. Tarakanov
TI  - Generalized de Bruijn graphs
JO  - Matematičeskie zametki
PY  - 1997
SP  - 540
EP  - 548
VL  - 62
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a6/
LA  - ru
ID  - MZM_1997_62_4_a6
ER  - 
%0 Journal Article
%A F. M. Malyshev
%A V. E. Tarakanov
%T Generalized de Bruijn graphs
%J Matematičeskie zametki
%D 1997
%P 540-548
%V 62
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a6/
%G ru
%F MZM_1997_62_4_a6
F. M. Malyshev; V. E. Tarakanov. Generalized de Bruijn graphs. Matematičeskie zametki, Tome 62 (1997) no. 4, pp. 540-548. http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a6/

[1] Kholl M., Kombinatorika, Mir, M., 1970

[2] Good I. J., “Normal recurring decimals”, J. London Math. Soc., 21 (1946), 167–169 | DOI | MR | Zbl

[3] Fredricksen H., “A survey of full length nonlinear shift register cycle algorithms”, SIAM Rev., 24:2 (1982), 195–221 | DOI | MR | Zbl

[4] Kratko M. I., Strok V. V., “Posledovatelnosti de Breina s ogranicheniyami”, Voprosy kibernetiki. Kombinatornyi analiz i teoriya grafov, Nauka, M., 1980, 80–84

[5] Shirisheva I. V., “O chisle konechnykh avtomatov, ustanavlivaemykh postoyannym vkhodom v fiksirovannoe sostoyanie”, Diskretnaya matem., 6:4 (1994), 80–86 | MR

[6] Kharari F., Teoriya grafov, Mir, M., 1973

[7] Allow C. M., Brenner J. L., “Roots and canonical forms for circulant matrices”, Trans. Amer. Math. Soc., 107 (1963), 60–76