On orientable real algebraic $M$-surfaces
Matematičeskie zametki, Tome 62 (1997) no. 4, pp. 520-526.

Voir la notice de l'article provenant de la source Math-Net.Ru

Here we study relations between homology classes determined by real points of a real algebraic $M$-surface. We prove new congruences involving the Euler characteristics of the connected components of the set of these real points.
@article{MZM_1997_62_4_a4,
     author = {V. A. Krasnov},
     title = {On orientable real algebraic $M$-surfaces},
     journal = {Matemati\v{c}eskie zametki},
     pages = {520--526},
     publisher = {mathdoc},
     volume = {62},
     number = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a4/}
}
TY  - JOUR
AU  - V. A. Krasnov
TI  - On orientable real algebraic $M$-surfaces
JO  - Matematičeskie zametki
PY  - 1997
SP  - 520
EP  - 526
VL  - 62
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a4/
LA  - ru
ID  - MZM_1997_62_4_a4
ER  - 
%0 Journal Article
%A V. A. Krasnov
%T On orientable real algebraic $M$-surfaces
%J Matematičeskie zametki
%D 1997
%P 520-526
%V 62
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a4/
%G ru
%F MZM_1997_62_4_a4
V. A. Krasnov. On orientable real algebraic $M$-surfaces. Matematičeskie zametki, Tome 62 (1997) no. 4, pp. 520-526. http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a4/

[1] Krasnov V. A., “O klassakh gomologii, opredelennykh veschestvennymi tochkami veschestvennogo algebraicheskogo mnogoobraziya”, Izv. AN SSSR. Ser. matem., 55:2 (1991), 282–302 | MR | Zbl

[2] Krasnov V. A., “Otobrazhenie Albaneze dlya veschestvennykh algebraicheskikh mnogoobrazii”, Matem. zametki, 32:3 (1982), 365–374 | MR | Zbl

[3] Krasnov V. A., “Otobrazhenie Albaneze dlya $\mathrm{GM}\mathbb Z$-mnogoobrazii”, Matem. zametki, 35:5 (1984), 739–747 | MR | Zbl

[4] Shafarevich I. R. (red.), Algebraicheskie poverkhnosti, Tr. MIAN, 75, Nauka, M., 1965 | MR | Zbl

[5] Krasnov V. A., “O klassakh kogomologii, opredelennykh veschestvennymi tochkami veschestvennoi algebraicheskoi GM-poverkhnosti”, Izv. RAN. Ser. matem., 57:5 (1993), 210–221 | Zbl

[6] Krasnov V. A., “Neravenstva Garnaka–Toma dlya otobrazhenii veschestvennykh algebraicheskikh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 47:2 (1983), 268–297 | MR

[7] Krasnov V. A., “Ekvivariantnye kogomologii veschestvennoi algebraicheskoi poverkhnosti i ikh prilozheniya”, Izv. RAN. Ser. matem., 60:6 (1996), 101–126 | MR | Zbl

[8] Rokhlin V. A., “Sravneniya po modulyu 16 v shestnadtsatoi probleme Gilberta”, Funktsion. analiz i ego prilozh., 6:4 (1972), 58–64 | MR | Zbl

[9] Nikulin V. V., “Involyutsii tselochislennykh kvadratichnykh form i ikh prilozheniya k veschestvennoi algebraicheskoi geometrii”, Izv. AN SSSR. Ser. matem., 47:1 (1983), 109–177 | MR