On the semigroup nilpotency and the Lie nilpotency of associative algebras
Matematičeskie zametki, Tome 62 (1997) no. 4, pp. 510-519.

Voir la notice de l'article provenant de la source Math-Net.Ru

To each associative ring $R$ we can assign the adjoint Lie ring $R^{(-)}$ (with the operation $(a,b)=ab-ba$) and two semigroups, the multiplicative semigroup $M(R)$ and the associated semigroup $A(R)$ (with the operation $a\circ b=ab+a+b$). It is clear that a Lie ring $R^{(-)}$ is commutative if and only if the semigroup $M(R)$ (or $A(R)$) is commutative. In the present paper we try to generalize this observation to the case in which $R^{(-)}$ is a nilpotent Lie ring. It is proved that if $R$ is an associative algebra with identity element over an infinite field $F$, then the algebra $R^{(-)}$ is nilpotent of length $c$ if and only if the semigroup $M(R)$ (or $A(R)$) is nilpotent of length $c$ (in the sense of A. I. Mal'tsev or B. Neumann and T. Taylor). For the case in which $R$ is an algebra without identity element over $F$, this assertion remains valid for $A(R)$, but fails for $M(R)$. Another similar results are obtained.
@article{MZM_1997_62_4_a3,
     author = {A. N. Krasilnikov},
     title = {On the semigroup nilpotency and the {Lie} nilpotency of associative algebras},
     journal = {Matemati\v{c}eskie zametki},
     pages = {510--519},
     publisher = {mathdoc},
     volume = {62},
     number = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a3/}
}
TY  - JOUR
AU  - A. N. Krasilnikov
TI  - On the semigroup nilpotency and the Lie nilpotency of associative algebras
JO  - Matematičeskie zametki
PY  - 1997
SP  - 510
EP  - 519
VL  - 62
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a3/
LA  - ru
ID  - MZM_1997_62_4_a3
ER  - 
%0 Journal Article
%A A. N. Krasilnikov
%T On the semigroup nilpotency and the Lie nilpotency of associative algebras
%J Matematičeskie zametki
%D 1997
%P 510-519
%V 62
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a3/
%G ru
%F MZM_1997_62_4_a3
A. N. Krasilnikov. On the semigroup nilpotency and the Lie nilpotency of associative algebras. Matematičeskie zametki, Tome 62 (1997) no. 4, pp. 510-519. http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a3/

[1] Maltsev A. I., “Nilpotentnye polugruppy”, Uch. zapiski Ivanovskogo ped. in-ta, 4 (1953), 107–111 ; Избранные труды, Т. 1, Наука, М., 1976, 335–339 | MR | Zbl

[2] Neumann B. H., Taylor T., “Subsemigroups of nilpotent groups”, Proc. Roy. Soc. London. Ser. A, 274 (1963), 1–4 | DOI | Zbl

[3] Shpilrain V. E., “Ob odnom opredelenii nilpotentnosti dlya polugrupp”, Mezhdunarodnaya konferentsiya po algebre, Tezisy dokladov po teorii modelei i algebraicheskikh sistem, Novosibirsk, 1989, 157

[4] Gupta N., Levin F., “On the Lie ideals of a ring”, J. Algebra, 81 (1983), 225–231 | DOI | MR | Zbl

[5] Laue H., “On the associated Lie ring and the adjoint group of a radical ring”, Canad. Math. Bull., 27 (1984), 215–222 | MR | Zbl

[6] Krasilnikov A. N., “Neskolko zamechanii o nilpotentnosti prisoedinennoi polugruppy i prisoedinennoi algebry”, Mezhdunarodnaya konferentsiya po algebre, Tezisy dokladov po teorii kolets, algebr i modulei (Barnaul), Novosibirsk, 1991, 58

[7] Bokut L. A., Lvov I. V., Kharchenko V. K., “Nekommutativnye koltsa”, Itogi nauki i tekhn. Sovrem. probl. matem. Fundament. napravleniya, 18, VINITI, M., 1987, 5–116

[8] Bakhturin Yu. A., Olshanskii A. Yu., “Tozhdestva”, Itogi nauki i tekhn. Sovrem. probl. matem. Fundament. napravleniya, 18, VINITI, M., 1987, 117–240

[9] Du X. K., “The centers of a radical ring”, Canad. Math. Bull., 35 (1992), 174–179 | MR | Zbl

[10] Jennings S., “Radical rings with nilpotent associated groups”, Trans. Roy. Soc. Canada (3), 49:3 (1955), 31–38 | MR | Zbl

[11] Smirnov M. B., Stroenie, lieva struktura i prisoedinennye gruppy nekotorykh tipov $PI$-kolets i kolets s involyutsiei, Diss. ... k. f.-m. n., Minsk, 1984

[12] Golubchik I. Z., Mikhalev A. V., “O mnogoobraziyakh algebr s polugruppovym tozhdestvom”, Vestn. MGU. Ser. 1. Matem., mekh., 1982, no. 2, 8–11 | MR | Zbl

[13] Kemer A. R., “O nematrichnykh mnogoobraziyakh”, Algebra i logika, 19 (1980), 255–283 | MR | Zbl

[14] Zimin A. I., “O polugruppakh, nilpotentnykh v smysle Maltseva”, Izv. vuzov. Matem., 1980, no. 6, 23–29 | MR | Zbl

[15] Magnus V., Karras A., Soliter D., Kombinatornaya teoriya grupp, Nauka, M., 1974 | Zbl

[16] Zalesskii A. E., “Razreshimye podgruppy multiplikativnoi gruppy lokalno konechnoi algebry”, Matem. sb., 61 (1963), 408–417 | MR | Zbl

[17] Lanski C., “Some remarks on rings with solvable units”, Ring Theory, Acad. Press, New York–London, 1972