Solvability of the vector problem by the linear criteria convolution algorithm
Matematičeskie zametki, Tome 62 (1997) no. 4, pp. 502-509

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions are found under which a multicriteria problem with a finite set of vector estimates is solvable by means of the linear criteria convolution (LCC) algorithm, that is, any Pareto optimum for the problem can be obtained as an optimum solution to a one-criterion problem with an aggregated criterion defined as an LCC. Also, an algorithm is suggested that is polynomial in dimension and reduces any problem with minimax and minimun criteria to an equivalent vector problem with the same Pareto set solvable by the LCC algorithm.
@article{MZM_1997_62_4_a2,
     author = {M. K. Kravtsov and O. A. Yanushkevich},
     title = {Solvability of the vector problem by the linear criteria convolution algorithm},
     journal = {Matemati\v{c}eskie zametki},
     pages = {502--509},
     publisher = {mathdoc},
     volume = {62},
     number = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a2/}
}
TY  - JOUR
AU  - M. K. Kravtsov
AU  - O. A. Yanushkevich
TI  - Solvability of the vector problem by the linear criteria convolution algorithm
JO  - Matematičeskie zametki
PY  - 1997
SP  - 502
EP  - 509
VL  - 62
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a2/
LA  - ru
ID  - MZM_1997_62_4_a2
ER  - 
%0 Journal Article
%A M. K. Kravtsov
%A O. A. Yanushkevich
%T Solvability of the vector problem by the linear criteria convolution algorithm
%J Matematičeskie zametki
%D 1997
%P 502-509
%V 62
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a2/
%G ru
%F MZM_1997_62_4_a2
M. K. Kravtsov; O. A. Yanushkevich. Solvability of the vector problem by the linear criteria convolution algorithm. Matematičeskie zametki, Tome 62 (1997) no. 4, pp. 502-509. http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a2/