Solvability of the vector problem by the linear criteria convolution algorithm
Matematičeskie zametki, Tome 62 (1997) no. 4, pp. 502-509.

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions are found under which a multicriteria problem with a finite set of vector estimates is solvable by means of the linear criteria convolution (LCC) algorithm, that is, any Pareto optimum for the problem can be obtained as an optimum solution to a one-criterion problem with an aggregated criterion defined as an LCC. Also, an algorithm is suggested that is polynomial in dimension and reduces any problem with minimax and minimun criteria to an equivalent vector problem with the same Pareto set solvable by the LCC algorithm.
@article{MZM_1997_62_4_a2,
     author = {M. K. Kravtsov and O. A. Yanushkevich},
     title = {Solvability of the vector problem by the linear criteria convolution algorithm},
     journal = {Matemati\v{c}eskie zametki},
     pages = {502--509},
     publisher = {mathdoc},
     volume = {62},
     number = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a2/}
}
TY  - JOUR
AU  - M. K. Kravtsov
AU  - O. A. Yanushkevich
TI  - Solvability of the vector problem by the linear criteria convolution algorithm
JO  - Matematičeskie zametki
PY  - 1997
SP  - 502
EP  - 509
VL  - 62
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a2/
LA  - ru
ID  - MZM_1997_62_4_a2
ER  - 
%0 Journal Article
%A M. K. Kravtsov
%A O. A. Yanushkevich
%T Solvability of the vector problem by the linear criteria convolution algorithm
%J Matematičeskie zametki
%D 1997
%P 502-509
%V 62
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a2/
%G ru
%F MZM_1997_62_4_a2
M. K. Kravtsov; O. A. Yanushkevich. Solvability of the vector problem by the linear criteria convolution algorithm. Matematičeskie zametki, Tome 62 (1997) no. 4, pp. 502-509. http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a2/

[1] Emelichev V. A., Kravtsov M. K., Yanushkevich O. A., “Leksikograficheskie optimumy mnogokriterialnoi zadachi diskretnoi optimizatsii”, Matem. zametki, 58:3 (1995), 365–371 | MR

[2] Geoffrion A. M., “Proper efficiency and the theory of vector maximization”, J. Math. Anal. Appl., 22 (1968), 618–630 | DOI | MR | Zbl

[3] Mikhalevich V. S., Volkovich V. L., Vychislitelnye metody issledovaniya i proektirovaniya slozhnykh sistem, Nauka, M., 1982 | Zbl

[4] Podinovskii V. V., Nogin V. D., Pareto-optimalnye resheniya mnogokriterialnykh zadach, Nauka, M., 1982 | Zbl

[5] Dubov Yu. A., Travkin S. I., Yakimets V. N., Mnogokriterialnye modeli formirovaniya i vybora variantov sistem, Nauka, M., 1986

[6] Burkard R. E., Keiding H., Krarup J., Pruzan P. M., “A relationship between optimality and efficiency in multicriteria 0–1 programming problems”, Comput. Oper. Res., 8:4 (1981), 241–247 | DOI

[7] Emelichev V. A., Perepelitsa V. A., “Slozhnost diskretnykh mnogokriterialnykh zadach”, Diskretnaya matem., 6:1 (1994), 3–33 | Zbl

[8] Emelichev V. A., Kravtsov M. K., “O nerazreshimosti vektornykh zadach diskretnoi optimizatsii na sistemakh podmnozhestv v klasse algoritmov lineinoi svertki kriteriev”, Dokl. RAN, 334:1 (1994), 9–11 | MR | Zbl

[9] Emelichev V. A., Kravtsov M. K., “O zadachakh vektornoi diskretnoi optimizatsii na sistemakh podmnozhestv, nerazreshimykh s pomoschyu algoritmov lineinoi svertki”, ZhVMiMF, 34:7 (1994), 1082–1094 | MR | Zbl

[10] Emelichev V. A., Kovalev M. M., Kravtsov M. K., Mnogogranniki, grafy, optimizatsiya, Nauka, M., 1981

[11] Gladkii A. A., Yanushkevich O. A., “O lineinoi svertke chastnykh kriteriev vektornoi zadachi minimizatsii”, IX Vserossiiskaya konferentsiya “Matematicheskoe programmirovanie i prilozheniya”, Tezisy dokladov, Ekaterinburg, 1995, 67

[12] Papadimitriu Kh., Staiglits K., Kombinatornaya optimizatsiya, algoritmy i slozhnost, Mir, M., 1985

[13] Emelichev V. A., Kravtsov M. K., “O kombinatornykh zadachakh vektornoi optimizatsii”, Diskretnaya matem., 7:1 (1995), 3–18 | MR | Zbl

[14] Leontev V. K., Gordeev E. N., “Kachestvennoe issledovanie traektornykh zadach”, Kibernetika, 1986, no. 5, 82–89 | MR | Zbl

[15] Yemelichev V. A., Kravtsov M. K., Yanushkevich O. A., “On solvability of vector problems on systems of subsets using a linear criteria convolution algorithm”, 2nd International Conference “Mathematical Algorithms”, Abstracts, Nizhny Novgorod, 1995, 21