On the number of connected components of the space of trigonometric polynomials of degree $n$ with $2n$ different critical values
Matematičeskie zametki, Tome 62 (1997) no. 4, pp. 635-640
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{MZM_1997_62_4_a18,
author = {B. Z. Shapiro},
title = {On the number of connected components of the space of trigonometric polynomials of degree $n$ with $2n$ different critical values},
journal = {Matemati\v{c}eskie zametki},
pages = {635--640},
year = {1997},
volume = {62},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a18/}
}
TY - JOUR AU - B. Z. Shapiro TI - On the number of connected components of the space of trigonometric polynomials of degree $n$ with $2n$ different critical values JO - Matematičeskie zametki PY - 1997 SP - 635 EP - 640 VL - 62 IS - 4 UR - http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a18/ LA - ru ID - MZM_1997_62_4_a18 ER -
%0 Journal Article %A B. Z. Shapiro %T On the number of connected components of the space of trigonometric polynomials of degree $n$ with $2n$ different critical values %J Matematičeskie zametki %D 1997 %P 635-640 %V 62 %N 4 %U http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a18/ %G ru %F MZM_1997_62_4_a18
B. Z. Shapiro. On the number of connected components of the space of trigonometric polynomials of degree $n$ with $2n$ different critical values. Matematičeskie zametki, Tome 62 (1997) no. 4, pp. 635-640. http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a18/
[1] Arnold V. I., UMN, 51:1 (1996), 3–50 | MR | Zbl
[2] Arnold V. I., Duke Math. J., 63:2 (1991), 537–555 | DOI | MR | Zbl
[3] Arnold V. I., “Topological classification of real trigonometric polynomials and cyclic serpents polyhedron”, Arnold–Gelfand Math. Sem., Birkhäuser, Basel, 1997, 101–106 | Zbl
[4] Coppel W. A., Disconjugacy, Lecture Notes in Math., 220, Springer-Verlag, New York, 1971 | MR | Zbl
[5] Rivlin T. J., Chebyshev Polynomials, 2nd ed., Wiley, Chichester, 1990