On the number of connected components of the space of trigonometric polynomials of degree $n$ with $2n$ different critical values
Matematičeskie zametki, Tome 62 (1997) no. 4, pp. 635-640.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{MZM_1997_62_4_a18,
     author = {B. Z. Shapiro},
     title = {On the number of connected components of the space of trigonometric polynomials of degree $n$ with $2n$ different critical values},
     journal = {Matemati\v{c}eskie zametki},
     pages = {635--640},
     publisher = {mathdoc},
     volume = {62},
     number = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a18/}
}
TY  - JOUR
AU  - B. Z. Shapiro
TI  - On the number of connected components of the space of trigonometric polynomials of degree $n$ with $2n$ different critical values
JO  - Matematičeskie zametki
PY  - 1997
SP  - 635
EP  - 640
VL  - 62
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a18/
LA  - ru
ID  - MZM_1997_62_4_a18
ER  - 
%0 Journal Article
%A B. Z. Shapiro
%T On the number of connected components of the space of trigonometric polynomials of degree $n$ with $2n$ different critical values
%J Matematičeskie zametki
%D 1997
%P 635-640
%V 62
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a18/
%G ru
%F MZM_1997_62_4_a18
B. Z. Shapiro. On the number of connected components of the space of trigonometric polynomials of degree $n$ with $2n$ different critical values. Matematičeskie zametki, Tome 62 (1997) no. 4, pp. 635-640. http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a18/

[1] Arnold V. I., UMN, 51:1 (1996), 3–50 | MR | Zbl

[2] Arnold V. I., Duke Math. J., 63:2 (1991), 537–555 | DOI | MR | Zbl

[3] Arnold V. I., “Topological classification of real trigonometric polynomials and cyclic serpents polyhedron”, Arnold–Gelfand Math. Sem., Birkhäuser, Basel, 1997, 101–106 | Zbl

[4] Coppel W. A., Disconjugacy, Lecture Notes in Math., 220, Springer-Verlag, New York, 1971 | MR | Zbl

[5] Rivlin T. J., Chebyshev Polynomials, 2nd ed., Wiley, Chichester, 1990