Asymptotics and weighted estimates of Meixner polynomials orthogonal on the grid $\{0,\delta,2\delta,\dots\}$
Matematičeskie zametki, Tome 62 (1997) no. 4, pp. 603-616.

Voir la notice de l'article provenant de la source Math-Net.Ru

Suppose that $0\delta\le1$, $N=1/\delta$ and $0\le\alpha$ is an integer. For the classical Meixner polynomials $\mathfrak M_{n,N}^\alpha(x)$ orthonormal on the gird $\{0,\delta,2\delta,\dots\}$ with weight $\rho(x)=(1-e^{-\delta})^\alpha\times\Gamma(Nx+\alpha+1)/\Gamma(Nx+1)$, the following asymptotic formula is obtained: $$ \mathfrak M_{n,N}^\alpha(z)=\Lambda_n^\alpha(z)+v_{n,N}^\alpha(z). $$ The remainder $v_{n,N}^\alpha(z)$ for $n\le\lambda N$ satisfies the estimate $$ |v_{n,N}^\alpha(z)|^2\le c(\alpha,\lambda)\delta \sum_{k=0}^n|\Lambda_k^\alpha(z)|^2, $$ where $\Lambda_k^\alpha(x)$ are the Laguerre orthonormal polynomials. As a consequence, a weighted estimate, for the Meixner polynomial $\mathfrak M_{n,N}^\alpha(x)$ on the semiaxis $[0,\infty)$ is obtained.
@article{MZM_1997_62_4_a11,
     author = {I. I. Sharapudinov},
     title = {Asymptotics and weighted estimates of {Meixner} polynomials orthogonal on the grid $\{0,\delta,2\delta,\dots\}$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {603--616},
     publisher = {mathdoc},
     volume = {62},
     number = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a11/}
}
TY  - JOUR
AU  - I. I. Sharapudinov
TI  - Asymptotics and weighted estimates of Meixner polynomials orthogonal on the grid $\{0,\delta,2\delta,\dots\}$
JO  - Matematičeskie zametki
PY  - 1997
SP  - 603
EP  - 616
VL  - 62
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a11/
LA  - ru
ID  - MZM_1997_62_4_a11
ER  - 
%0 Journal Article
%A I. I. Sharapudinov
%T Asymptotics and weighted estimates of Meixner polynomials orthogonal on the grid $\{0,\delta,2\delta,\dots\}$
%J Matematičeskie zametki
%D 1997
%P 603-616
%V 62
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a11/
%G ru
%F MZM_1997_62_4_a11
I. I. Sharapudinov. Asymptotics and weighted estimates of Meixner polynomials orthogonal on the grid $\{0,\delta,2\delta,\dots\}$. Matematičeskie zametki, Tome 62 (1997) no. 4, pp. 603-616. http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a11/

[1] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, T. 2, Nauka, M., 1974

[2] Sharapudinov I. I., Asimptoticheskie svoistva mnogochlenov Meiksnera i ikh prilozheniya, Dep. VINITI, No 1433-83

[3] Sharapudinov I. I., “Nekotorye svoistva ortogonalnykh mnogochlenov Meiksnera”, Matem. zametki, 47:3 (1990), 135–137 | MR | Zbl

[4] Sharapudinov I. I., Nekotorye voprosy teorii ortogonalnykh sistem, Diss. ... d. f.-m. n., MIAN, M., 1991

[5] Sharapudinov I. I., “Asymptotics of Meixner's polynomials”, Facta Univ. Ser. Math. Inform., 6 (1991), 13–21 | MR | Zbl

[6] Askey R., Wainger S., “Mean convergence of expansions in Laguerre and Hermite series”, Amer. J. Math., 87 (1965), 695–708 | DOI | MR | Zbl

[7] Muckenhoupt B., “Mean convergence of Hermite and Laguerre series”, Trans. Amer. Math. Soc., 147 (1970), 433–460 | DOI | MR

[8] Sege G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962

[9] Sharapudinov I. I., “Asimptoticheskie svoistva ortogonalnykh mnogochlenov Khana diskretnoi peremennoi”, Matem. sb., 180:9 (1989), 1259–1277 | Zbl