A regularization method for evolutionary problems in mechanics of visco-plastic media
Matematičeskie zametki, Tome 62 (1997) no. 4, pp. 483-493.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a regularization method for solving the Cauchy problem for parabolic inclusions that arise in the mechanics of visco-plastic media. We also consider some applications of the regularization method to the problem of forced oscillations and prove that the set of solutions to the Cauchy problem is acyclic for the parabolic inclusions under consideration.
@article{MZM_1997_62_4_a0,
     author = {V. S. Klimov},
     title = {A regularization method for evolutionary problems in mechanics of visco-plastic media},
     journal = {Matemati\v{c}eskie zametki},
     pages = {483--493},
     publisher = {mathdoc},
     volume = {62},
     number = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a0/}
}
TY  - JOUR
AU  - V. S. Klimov
TI  - A regularization method for evolutionary problems in mechanics of visco-plastic media
JO  - Matematičeskie zametki
PY  - 1997
SP  - 483
EP  - 493
VL  - 62
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a0/
LA  - ru
ID  - MZM_1997_62_4_a0
ER  - 
%0 Journal Article
%A V. S. Klimov
%T A regularization method for evolutionary problems in mechanics of visco-plastic media
%J Matematičeskie zametki
%D 1997
%P 483-493
%V 62
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a0/
%G ru
%F MZM_1997_62_4_a0
V. S. Klimov. A regularization method for evolutionary problems in mechanics of visco-plastic media. Matematičeskie zametki, Tome 62 (1997) no. 4, pp. 483-493. http://geodesic.mathdoc.fr/item/MZM_1997_62_4_a0/

[1] Mosolov P. P., Myasnikov V. P., Mekhanika zhestkoplasticheskikh sred, Nauka, M., 1981 | Zbl

[2] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978

[3] Krasnoselskii M. A., Zabreiko P. P., Geometricheskie metody nelineinogo analiza, Nauka, M., 1975

[4] Borisovich Yu. G., Gelman B. D., Myshkis A. D., Obukhovskii V. V., “Topologicheskie metody v teorii nepodvizhnykh tochek mnogoznachnykh otobrazhenii”, UMN, 35:1 (1980), 59–126 | MR | Zbl

[5] Klimov V. S., “K teorii evolyutsionnykh zadach mekhaniki vyazkoplasticheskikh sred”, Izv. RAN. Ser. matem., 59:1 (1995), 139–156 | MR | Zbl

[6] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970

[7] Lions Zh. L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972

[8] Klimov V. S., “K zadache o periodicheskikh resheniyakh operatornykh differentsialnykh vklyuchenii”, Izv. AN SSSR. Ser. matem., 53:2 (1989), 309–327 | MR

[9] Klimov V. S., Semko E. R., Mnogoznachnye operatory superpozitsii v prostranstvakh izmerimykh funktsii, Dep. VINITI, No 2934-V91

[10] Levitan B. M., Zhikov V. V., Pochti periodicheskie funktsii i differentsialnye uravneniya, Izd-vo MGU, M., 1978 | Zbl

[11] Gelman B. D., “O strukture mnozhestva reshenii vklyuchenii s mnogoznachnymi operatorami”, Globalnyi analiz i matematicheskaya fizika, Izd-vo VGU, Voronezh, 1987, 26–41

[12] Khenri D., Geometricheskaya teoriya polulineinykh parabolicheskikh uravnenii, Mir, M., 1985