Approximation of functions of bounded $p$-variation by polynomials in terms of the Faber--Schauder system
Matematičeskie zametki, Tome 62 (1997) no. 3, pp. 363-371

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the best polynomial approximation in terms of the system of Faber–Schauder functions in the space $C_p[0,1]$ is studied. The constant in the estimate of Jackson's inequality for the best approximation in the metric of $C_p[0,1]$ and the estimate of the modulus of continuity $\omega_{1-1/p}$ are refined.
@article{MZM_1997_62_3_a4,
     author = {S. S. Volosivets},
     title = {Approximation of functions of bounded $p$-variation by polynomials in terms of the {Faber--Schauder} system},
     journal = {Matemati\v{c}eskie zametki},
     pages = {363--371},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a4/}
}
TY  - JOUR
AU  - S. S. Volosivets
TI  - Approximation of functions of bounded $p$-variation by polynomials in terms of the Faber--Schauder system
JO  - Matematičeskie zametki
PY  - 1997
SP  - 363
EP  - 371
VL  - 62
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a4/
LA  - ru
ID  - MZM_1997_62_3_a4
ER  - 
%0 Journal Article
%A S. S. Volosivets
%T Approximation of functions of bounded $p$-variation by polynomials in terms of the Faber--Schauder system
%J Matematičeskie zametki
%D 1997
%P 363-371
%V 62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a4/
%G ru
%F MZM_1997_62_3_a4
S. S. Volosivets. Approximation of functions of bounded $p$-variation by polynomials in terms of the Faber--Schauder system. Matematičeskie zametki, Tome 62 (1997) no. 3, pp. 363-371. http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a4/