Approximation of functions of bounded $p$-variation by polynomials in terms of the Faber--Schauder system
Matematičeskie zametki, Tome 62 (1997) no. 3, pp. 363-371.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the best polynomial approximation in terms of the system of Faber–Schauder functions in the space $C_p[0,1]$ is studied. The constant in the estimate of Jackson's inequality for the best approximation in the metric of $C_p[0,1]$ and the estimate of the modulus of continuity $\omega_{1-1/p}$ are refined.
@article{MZM_1997_62_3_a4,
     author = {S. S. Volosivets},
     title = {Approximation of functions of bounded $p$-variation by polynomials in terms of the {Faber--Schauder} system},
     journal = {Matemati\v{c}eskie zametki},
     pages = {363--371},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a4/}
}
TY  - JOUR
AU  - S. S. Volosivets
TI  - Approximation of functions of bounded $p$-variation by polynomials in terms of the Faber--Schauder system
JO  - Matematičeskie zametki
PY  - 1997
SP  - 363
EP  - 371
VL  - 62
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a4/
LA  - ru
ID  - MZM_1997_62_3_a4
ER  - 
%0 Journal Article
%A S. S. Volosivets
%T Approximation of functions of bounded $p$-variation by polynomials in terms of the Faber--Schauder system
%J Matematičeskie zametki
%D 1997
%P 363-371
%V 62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a4/
%G ru
%F MZM_1997_62_3_a4
S. S. Volosivets. Approximation of functions of bounded $p$-variation by polynomials in terms of the Faber--Schauder system. Matematičeskie zametki, Tome 62 (1997) no. 3, pp. 363-371. http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a4/

[1] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, Nauka, M., 1984 | Zbl

[2] Terekhin A. P., “Priblizhenie funktsii ogranichennoi $p$-variatsii”, Izv. vuzov. Matem., 1965, no. 2, 171–187 | MR | Zbl

[3] Terekhin A. P., “Funktsii ogranichennoi $p$-variatsii s dannym poryadkom modulya nepreryvnosti”, Matem. zametki, 12:5 (1972), 523–530 | MR | Zbl

[4] Golubov B. I., Efimov A. V., Skvortsov V. A., Ryady i preobrazovaniya Uolsha, Nauka, M., 1987 | Zbl

[5] Golubov B. I., “Kriterii kompaktnosti mnozhestv v prostranstvakh funktsii obobschennoi ogranichennoi variatsii”, Izv. AN ArmSSR, 3:6 (1968), 409–416 | MR | Zbl

[6] Volosivets S. S., “Priblizhenie funktsii ogranichennoi $p$-variatsii polinomami po sistemam Khaara i Uolsha”, Matem. zametki, 53:6 (1993), 11–21 | MR | Zbl

[7] Ciesielski Z., “Some properties of Schauder basis of the space $C_{\langle0,1\rangle}$”, Bull. Acad. Polon. Sci., 8:3 (1960), 141–144 | MR | Zbl

[8] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960

[9] Volosivets S. S., “Priblizhenie funktsii ogranichennoi $p$-fluktuatsii polinomami po multiplikativnym sistemam”, Anal. Math., 21:1 (1995), 61–77 | DOI | MR | Zbl

[10] Stechkin S. B., “Ob absolyutnoi skhodimosti ryadov Fure, II”, Izv. AN SSSR. Ser. matem., 19:4 (1955), 221–246 | MR | Zbl

[11] Konyushkov A. A., “O skhodimosti nekotorykh ryadov iz koeffitsientov Fure”, UMN, 14:1 (1959), 189–196 | MR

[12] Goryachev A. P., “O koeffitsientakh Fure po sisteme Fabera–Shaudera”, Matem. zametki, 15:2 (1974), 341–352 | MR | Zbl