Approximation of functions of bounded $p$-variation by polynomials in terms of the Faber--Schauder system
Matematičeskie zametki, Tome 62 (1997) no. 3, pp. 363-371
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper the best polynomial approximation in terms of the system of Faber–Schauder functions in the space $C_p[0,1]$ is studied. The constant in the estimate of Jackson's inequality for the best approximation in the metric of $C_p[0,1]$ and the estimate of the modulus of continuity $\omega_{1-1/p}$ are refined.
@article{MZM_1997_62_3_a4,
author = {S. S. Volosivets},
title = {Approximation of functions of bounded $p$-variation by polynomials in terms of the {Faber--Schauder} system},
journal = {Matemati\v{c}eskie zametki},
pages = {363--371},
publisher = {mathdoc},
volume = {62},
number = {3},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a4/}
}
TY - JOUR AU - S. S. Volosivets TI - Approximation of functions of bounded $p$-variation by polynomials in terms of the Faber--Schauder system JO - Matematičeskie zametki PY - 1997 SP - 363 EP - 371 VL - 62 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a4/ LA - ru ID - MZM_1997_62_3_a4 ER -
S. S. Volosivets. Approximation of functions of bounded $p$-variation by polynomials in terms of the Faber--Schauder system. Matematičeskie zametki, Tome 62 (1997) no. 3, pp. 363-371. http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a4/