Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_1997_62_3_a3, author = {E. S. Volkova}, title = {Curvature identities for normal manifolds of killing type}, journal = {Matemati\v{c}eskie zametki}, pages = {351--362}, publisher = {mathdoc}, volume = {62}, number = {3}, year = {1997}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a3/} }
E. S. Volkova. Curvature identities for normal manifolds of killing type. Matematičeskie zametki, Tome 62 (1997) no. 3, pp. 351-362. http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a3/
[1] Sasaki S., Hatakeyma J., “On differentiable manifolds with contact metric structures”, J. Math. Soc. Japan, 14 (1964), 249–271
[2] Ishihara I., “Anti-invariant submanifolds of a Sasakian space form”, Kodai Math. J., 2 (1976), 171–186 | DOI | MR
[3] Tanno S., “Qusi-Sasakian structures of rank $2p+1$”, J. Differential Geom., 5:3–4 (1971), 317–324 | MR | Zbl
[4] Ianus S., Visinescu M., “Kaluza–Klein theory with scalar fields on generalised Hopf manifolds”, Classical Quantum Gravity, 4:5 (1987), 1317–1325 | DOI | MR | Zbl
[5] Gray A., “Curvature identites for Hermitian and almost Hermitian manifolds”, Tôhoku Math. J., 28:4 (1976), 601–612 | DOI | MR | Zbl
[6] Goldberg S., Yano K., “Integrability of almost cosymplectic structures”, Pacific J. Math., 31:2 (1969), 373–382 | MR | Zbl
[7] Kirichenko V. F., “Metody obobschennoi ermitovoi geometrii v teorii pochti kontaktnykh mnogoobrazii”, Itogi nauki i tekhn. Probl. geometrii, 18, VINITI, M., 1986, 25–71 | MR
[8] Efimov N. V., Rozendorn E. R., Lineinaya algebra i mnogomernaya geometriya, Nauka, M., 1970
[9] Kirichenko V. F., “Aksioma $\Phi$-golomorfnykh ploskostei v kontaktnoi metricheskoi geometrii”, Izv. AN SSSR. Ser. matem., 48:4 (1983), 711–734 | MR
[10] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, T. 1, 2, Nauka, M., 1981
[11] Kartan E., Rimanova geometriya v ortogonalnom repere, Izd-vo MGU, M., 1960
[12] Kirichenko V. F., “Lokalno konformno-kelerovy mnogoobraziya postoyannoi sektsionnoi krivizny”, Matem. sb., 182:3 (1991), 354–363
[13] Kirichenko V. F., “Konformno-ploskie lokalno konformno-kelerovy mnogoobraziya”, Matem. zametki, 51:5 (1992), 57–66 | MR | Zbl
[14] Vaisman I., “On locally conformal Kähler manifolds”, Israel J. Math., 24:3–4 (1976), 338–351 | DOI | MR | Zbl
[15] Vaisman I., “On locally and globally conformal Kähler manifolds”, Trans. Amer. Math. Soc., 2 (1980), 533–542 | DOI | MR
[16] Kirichenko V. F., “Kvaziodnorodnye mnogoobraziya i obobschennye pochti ermitovy struktury”, Izv. AN SSSR. Ser. matem., 47:6 (1983), 1208–1223 | MR | Zbl