Del Pezzo surfaces with nonrational singularities
Matematičeskie zametki, Tome 62 (1997) no. 3, pp. 451-467.

Voir la notice de l'article provenant de la source Math-Net.Ru

Normal algebraic surfaces $X$ with the property $\operatorname{rk}(\operatorname{Div}(X)\otimes\mathbb Q/{\equiv})=1$, numerically ample canonical classes, and nonrational singularities are classified. It is proved, in particular, that any such surface $X$ is a contraction of an exceptional section of a (possibly singular) relatively minimal ruled surface $\widetilde X$ with a nonrational base. Moreover, $\widetilde X$ is uniquely determined by the surface $X$.
@article{MZM_1997_62_3_a13,
     author = {I. A. Cheltsov},
     title = {Del {Pezzo} surfaces with nonrational singularities},
     journal = {Matemati\v{c}eskie zametki},
     pages = {451--467},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a13/}
}
TY  - JOUR
AU  - I. A. Cheltsov
TI  - Del Pezzo surfaces with nonrational singularities
JO  - Matematičeskie zametki
PY  - 1997
SP  - 451
EP  - 467
VL  - 62
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a13/
LA  - ru
ID  - MZM_1997_62_3_a13
ER  - 
%0 Journal Article
%A I. A. Cheltsov
%T Del Pezzo surfaces with nonrational singularities
%J Matematičeskie zametki
%D 1997
%P 451-467
%V 62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a13/
%G ru
%F MZM_1997_62_3_a13
I. A. Cheltsov. Del Pezzo surfaces with nonrational singularities. Matematičeskie zametki, Tome 62 (1997) no. 3, pp. 451-467. http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a13/

[1] Sakai F., “Weil divisors on normal surfaces”, Duke Math. J., 51 (1984), 877–887 | DOI | MR | Zbl

[2] Fujisawa T., On non-rational Del Pezzo surfaces, Preprint TITECH-MATH 13-93, No22, Tokyo Inst. Tech., Tokyo, 1993

[3] Hartshorne R., Algebraic Geometry, Springer-Verlag, Berlin, 1977 | Zbl

[4] Beauville A., Surfaces Algebriques Complexes, Astérisque, 54, Montrouge, 1978 | MR | Zbl

[5] Brenton L., “Some algebraicity criteria for singular surfaces”, Invent. Math., 41 (1977), 129–147 | DOI | MR | Zbl

[6] Artin M., “On isolated rational singularities of surfaces”, Amer. J. Math., 88 (1966), 129–136 | DOI | MR | Zbl