Criterion for uniform invertibility of families of strong approximations to one-dimensional singular integral operators with continuous coefficients
Matematičeskie zametki, Tome 62 (1997) no. 3, pp. 430-439.

Voir la notice de l'article provenant de la source Math-Net.Ru

A criterion is obtained for the applicability of the approximation method based on strongly approximating operator families converging to a one-dimensional singular integral operator with coefficients continuous in the circle. Some special cases are considered.
@article{MZM_1997_62_3_a11,
     author = {V. S. Pilidi},
     title = {Criterion for uniform invertibility of families of strong approximations to one-dimensional singular integral operators with continuous coefficients},
     journal = {Matemati\v{c}eskie zametki},
     pages = {430--439},
     publisher = {mathdoc},
     volume = {62},
     number = {3},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a11/}
}
TY  - JOUR
AU  - V. S. Pilidi
TI  - Criterion for uniform invertibility of families of strong approximations to one-dimensional singular integral operators with continuous coefficients
JO  - Matematičeskie zametki
PY  - 1997
SP  - 430
EP  - 439
VL  - 62
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a11/
LA  - ru
ID  - MZM_1997_62_3_a11
ER  - 
%0 Journal Article
%A V. S. Pilidi
%T Criterion for uniform invertibility of families of strong approximations to one-dimensional singular integral operators with continuous coefficients
%J Matematičeskie zametki
%D 1997
%P 430-439
%V 62
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a11/
%G ru
%F MZM_1997_62_3_a11
V. S. Pilidi. Criterion for uniform invertibility of families of strong approximations to one-dimensional singular integral operators with continuous coefficients. Matematičeskie zametki, Tome 62 (1997) no. 3, pp. 430-439. http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a11/

[1] Gokhberg I. Ts., Feldman I. A., Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Nauka, M., 1971

[2] Pilidi V. S., “O ravnomernoi obratimosti regulyarnykh approksimatsii odnomernykh singulyarnykh integralnykh operatorov”, Dokl. AN SSSR, 299:6 (1988), 1317–1320 | MR | Zbl

[3] Pilidi V. S., “O ravnomernoi obratimosti regulyarnykh approksimatsii odnomernykh singulyarnykh integralnykh operatorov s kusochno-nepreryvnymi koeffitsientami”, Dokl. AN SSSR, 307:2 (1989), 280–283

[4] Pilidi V. S., “Kriterii ravnomernoi obratimosti regulyarnykh approksimatsii odnomernykh singulyarnykh integralnykh operatorov s kusochno-nepreryvnymi koeffitsientami”, Izv. AN SSSR. Ser. matem., 54:6 (1990), 1270–1294

[5] Stechkin S. B., “O bilineinykh formakh”, Dokl. AN SSSR, 71:2 (1950), 237–240 | MR | Zbl

[6] Gokhberg I. Ts., Krupnik N. Ya., Vvedenie v teoriyu odnomernykh singulyarnykh integralnykh operatorov, Shtiintsa, Kishinev, 1973

[7] Zigmund A., Trigonometricheskie ryady, T. 1, 2, Mir, M., 1965