Complexity properties of recursively enumerable sets and $sQ$-completeness
Matematičeskie zametki, Tome 62 (1997) no. 3, pp. 425-429
Voir la notice de l'article provenant de la source Math-Net.Ru
The notions of effectively subcreative set and strongly effectively acceleratable set are introduced. It is proved that the notions of effectively subcreative set, strongly effectively acceleratable set, and $sQ$-complete recursively enumerable set are equivalent.
@article{MZM_1997_62_3_a10,
author = {R. Sh. Omanadze},
title = {Complexity properties of recursively enumerable sets and $sQ$-completeness},
journal = {Matemati\v{c}eskie zametki},
pages = {425--429},
publisher = {mathdoc},
volume = {62},
number = {3},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a10/}
}
R. Sh. Omanadze. Complexity properties of recursively enumerable sets and $sQ$-completeness. Matematičeskie zametki, Tome 62 (1997) no. 3, pp. 425-429. http://geodesic.mathdoc.fr/item/MZM_1997_62_3_a10/