Decompositions of metrizable compact spaces admitting $T$-systems of complex-valued functions
Matematičeskie zametki, Tome 62 (1997) no. 2, pp. 259-267.

Voir la notice de l'article provenant de la source Math-Net.Ru

Upper semicontinuous decompositions into continua of a metrizable compact space admitting a Chebyshev system of continuous complex-valued functions are considered. It is proved that the cyclic elements of the Moore decomposition space can be embedded in the two-dimensional sphere.
@article{MZM_1997_62_2_a8,
     author = {V. A. Koshcheev},
     title = {Decompositions of metrizable compact spaces admitting $T$-systems of complex-valued functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {259--267},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a8/}
}
TY  - JOUR
AU  - V. A. Koshcheev
TI  - Decompositions of metrizable compact spaces admitting $T$-systems of complex-valued functions
JO  - Matematičeskie zametki
PY  - 1997
SP  - 259
EP  - 267
VL  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a8/
LA  - ru
ID  - MZM_1997_62_2_a8
ER  - 
%0 Journal Article
%A V. A. Koshcheev
%T Decompositions of metrizable compact spaces admitting $T$-systems of complex-valued functions
%J Matematičeskie zametki
%D 1997
%P 259-267
%V 62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a8/
%G ru
%F MZM_1997_62_2_a8
V. A. Koshcheev. Decompositions of metrizable compact spaces admitting $T$-systems of complex-valued functions. Matematičeskie zametki, Tome 62 (1997) no. 2, pp. 259-267. http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a8/

[1] Kolmogorov A. N., “Zamechanie po povodu mnogochlenov P. L. Chebysheva, naimenee uklonyayuschikhsya ot zadannoi funktsii”, UMN, 3:1 (1948), 216–221 | MR

[2] Schoenberg I. J., Yang C. T., “On the unicity of solutions of problems of best approximation”, Ann. Mat. Pura Appl., 54 (1961), 1–12 | DOI | MR | Zbl

[3] Overdeck J. M., “On the nonexistence of complex Haar systems”, Bull. Amer. Math. Soc., 77:5 (1971), 737–740 | DOI | MR | Zbl

[4] Koscheev V. A., “O chebyshevskikh sistemakh lokalno analiticheskikh funktsii”, Matem. zametki, 55:3 (1994), 35–46 | MR | Zbl

[5] Fedorchuk V. V., Filippov V. V., Obschaya topologiya. Osnovnye konstruktsii, Izd-vo MGU, M., 1988 | Zbl

[6] Kuratovskii K., Topologiya, T. 2, Mir, M., 1969

[7] Aleksandrov P. S., “Topologicheskie teoremy dvoistvennosti. 1: Zamknutye mnozhestva”, Tr. MIAN, 48, Nauka, M., 1955, 5–108 | MR | Zbl

[8] Claytor S., “Topological immersions of peanian continua in a spherical surface”, Ann. of Math., 35:4 (1934), 809–835 | DOI | MR | Zbl