On a transformation operator
Matematičeskie zametki, Tome 62 (1997) no. 2, pp. 206-215

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence of a transformation operator that takes the solution of the equation $y''=\lambda^{2n}y$ to the solution of the equation $$ y''-\bigl(q_0(x)+\lambda q_1(x)+\dots+\lambda^{n-1}q_{n-1}(x)\bigr)y=\lambda^{2n}y $$ with a condition at infinity. Some properties of the kernel of this operator are studied.
@article{MZM_1997_62_2_a4,
     author = {I. M. Guseinov},
     title = {On a transformation operator},
     journal = {Matemati\v{c}eskie zametki},
     pages = {206--215},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a4/}
}
TY  - JOUR
AU  - I. M. Guseinov
TI  - On a transformation operator
JO  - Matematičeskie zametki
PY  - 1997
SP  - 206
EP  - 215
VL  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a4/
LA  - ru
ID  - MZM_1997_62_2_a4
ER  - 
%0 Journal Article
%A I. M. Guseinov
%T On a transformation operator
%J Matematičeskie zametki
%D 1997
%P 206-215
%V 62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a4/
%G ru
%F MZM_1997_62_2_a4
I. M. Guseinov. On a transformation operator. Matematičeskie zametki, Tome 62 (1997) no. 2, pp. 206-215. http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a4/