An extremum problem on a class of differentiable functions of several variables
Matematičeskie zametki, Tome 62 (1997) no. 2, pp. 192-205

Voir la notice de l'article provenant de la source Math-Net.Ru

On the multidimensional class $W_0^rH_\omega^{(n)}$ of continuous periodic functions $F$ with the $r$th derivative $D^rF$ from $$ H_\omega^{(n)} =\biggl\{f\in C\bigm| |f(x)-f(y)|\le\sum_{i=1}^n\omega_i(|x_i-y_i|) \forall x,y\in\mathbb R^n\biggr\} $$ (where the $\omega_i(x_i)$ are the convex moduli of continuity) and zero mean with respect to each variable, we obtain the exact value of $$ M_r(\omega) =\sup_{F\in W_0^rH_\omega^{(n)}}\|F\|_C. $$
@article{MZM_1997_62_2_a3,
     author = {D. V. Gorbachev},
     title = {An extremum problem on a class of differentiable functions of several variables},
     journal = {Matemati\v{c}eskie zametki},
     pages = {192--205},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a3/}
}
TY  - JOUR
AU  - D. V. Gorbachev
TI  - An extremum problem on a class of differentiable functions of several variables
JO  - Matematičeskie zametki
PY  - 1997
SP  - 192
EP  - 205
VL  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a3/
LA  - ru
ID  - MZM_1997_62_2_a3
ER  - 
%0 Journal Article
%A D. V. Gorbachev
%T An extremum problem on a class of differentiable functions of several variables
%J Matematičeskie zametki
%D 1997
%P 192-205
%V 62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a3/
%G ru
%F MZM_1997_62_2_a3
D. V. Gorbachev. An extremum problem on a class of differentiable functions of several variables. Matematičeskie zametki, Tome 62 (1997) no. 2, pp. 192-205. http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a3/