Smooth regularization of plurisubharmonic functions
Matematičeskie zametki, Tome 62 (1997) no. 2, pp. 312-320
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the problem of approximating a given plurisubharmonic function by smooth plurisubharmonic functions. We propose a new constructive approximation method that permits one to obtain more detailed information about the approximating functions. Thus a function $u\in\operatorname{PSH}(\mathbb C^n)$ having finite growth order can be approximated by smooth functions $v\in\operatorname{PSH}(\mathbb C^n)$ so that the difference $|v-u|$ has almost logarithmic growth (Theorem 2). It can also be approximated so that the difference $|v-u|$ has a power-law growth; in this case, however, power-law estimates on $|\operatorname{grad}v|$ appear (Theorem 3).
@article{MZM_1997_62_2_a12,
author = {R. S. Yulmukhametov},
title = {Smooth regularization of plurisubharmonic functions},
journal = {Matemati\v{c}eskie zametki},
pages = {312--320},
publisher = {mathdoc},
volume = {62},
number = {2},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a12/}
}
R. S. Yulmukhametov. Smooth regularization of plurisubharmonic functions. Matematičeskie zametki, Tome 62 (1997) no. 2, pp. 312-320. http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a12/