Smooth regularization of plurisubharmonic functions
Matematičeskie zametki, Tome 62 (1997) no. 2, pp. 312-320.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of approximating a given plurisubharmonic function by smooth plurisubharmonic functions. We propose a new constructive approximation method that permits one to obtain more detailed information about the approximating functions. Thus a function $u\in\operatorname{PSH}(\mathbb C^n)$ having finite growth order can be approximated by smooth functions $v\in\operatorname{PSH}(\mathbb C^n)$ so that the difference $|v-u|$ has almost logarithmic growth (Theorem 2). It can also be approximated so that the difference $|v-u|$ has a power-law growth; in this case, however, power-law estimates on $|\operatorname{grad}v|$ appear (Theorem 3).
@article{MZM_1997_62_2_a12,
     author = {R. S. Yulmukhametov},
     title = {Smooth regularization of plurisubharmonic functions},
     journal = {Matemati\v{c}eskie zametki},
     pages = {312--320},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a12/}
}
TY  - JOUR
AU  - R. S. Yulmukhametov
TI  - Smooth regularization of plurisubharmonic functions
JO  - Matematičeskie zametki
PY  - 1997
SP  - 312
EP  - 320
VL  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a12/
LA  - ru
ID  - MZM_1997_62_2_a12
ER  - 
%0 Journal Article
%A R. S. Yulmukhametov
%T Smooth regularization of plurisubharmonic functions
%J Matematičeskie zametki
%D 1997
%P 312-320
%V 62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a12/
%G ru
%F MZM_1997_62_2_a12
R. S. Yulmukhametov. Smooth regularization of plurisubharmonic functions. Matematičeskie zametki, Tome 62 (1997) no. 2, pp. 312-320. http://geodesic.mathdoc.fr/item/MZM_1997_62_2_a12/

[1] Ronkin L. I., Vvedenie v teoriyu tselykh funktsii mnogikh peremennykh, Nauka, M., 1971 | Zbl

[2] Sadullaev A., Kompleksnaya teoriya potentsiala i ee primeneniya, Diss. ... k. f.-m. n., IM AN UzSSR, Tashkent, 1982

[3] Yulmukhametov R. S., Asimptotika plyurisubgarmonicheskikh funktsii, Preprint, Bashkirskii filial AN SSSR, Ufa, 1987

[4] Lelon P., Gruman L., Tselye funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1989 | Zbl

[5] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | Zbl